
Programmable Acceleration for
Sparse Matrices in a

Data-movement Limited World
Arjun Rawal†, Yuanwei Fang†, Andrew A. Chien†‡

University of Chicago†
Argonne National Laboratory‡

1

Modern Data Processing

● We have more data than ever before
● Data analysis is how we derive insights and value

2

Data Analysis is Built on Matrix Computation

● Examples include
○ Machine Learning
○ Graph Algorithms
○ Scientific Computing

● => All are forms of sparse matrix computation

● Massive opportunity to improve performance on sparse matrices, in

particular SpMV (Sparse Matrix Vector Product)

3

Background

● Custom formats and representations have been a large area of focus
○ COO, CSR, BSR, DIA, ELL ...

● Format optimizations require significant code/data rewrite but
performance benefits make it worthwhile

4

Why is improving SpMV difficult?

● 2 FLOPS/Byte -> low data reuse
● Caching can’t help us here

○ Focus on matrices greater than 1M nonzeros (> 12MB in CSR)

● Memory bandwidth becomes the limit

5
CSR SpMV

Compute Performance is Outstripping Memory Bandwidth

McCalpin’s study shows - bottleneck is data movement
Sc16 invited talk: Memory bandwidth and system balance in hpc systems. http://sites.utexas.edu/jdm4372/2016/11/22/

6

New Approach to Accelerating SpMV

Goal: Use CPU-UDP heterogeneous

architecture to overcome memory bandwidth

limits through compressed encoding of data

7

UDP (Unstructured Data Processor)

● We use the UDP , a data recoding accelerator, to help with data
transformation (MICRO ‘15, MICRO ‘17)

● UDP is a software programmable accelerator that works with a CPU

● UDP is a low power, high throughput accelerator (tiny)

● Direct memory integration

8

UDP Advantage

● Software programmable

● Perfect for SpMV because of high throughput, low power, and

direct memory integration

9

● UDP unifies many data

processing accelerators

UDP Architecture

● 64 Lane MIMD accelerator
○ Each lane has scratchpad memory

and data registers

● 14nm process, 8.7 mm2 chip area
● 1.6 Ghz and 160 mW
● Used for data transformation

workloads that perform poorly on
traditional CPU architecture

10

UDP Performance (1 UDP vs 8 CPU threads)

● >4x speedup on Snappy
decompression

● >100x speedup on
Huffman Decoding

Y. Fang, T. T. Hoang, M. Becchi, and A. A. Chien. Fast support for unstructured data processing: The unified automata processor. In Proceedings of the 48th International Symposium on
Microarchitecture, MICRO-48, Dec. 2015.
Y. Fang, C. Zou, A. J. Elmore, and A. A. Chien. Udp: a programmable accelerator for extract-transform-load workloads and more. In Pro- ceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 55–68. ACM, 2017. 11

UDP Power Savings (1 UDP vs 8 CPU threads)

● >250x power savings
on Snappy on CPU
(geomean)

● > 10,000x power
savings on Huffman
Decoding (geomean)

12

Data Decompression Workload

● Custom data encode/decode chosen for
SpMV on CSR

● Serial Pipeline
○ Huffman Decoding
○ Snappy Decompression
○ Delta Decoding

● Data passes through UDP and is
decompressed en route to CPU

13

UDP
Programs

Example Integration into CPU Code

14

Evaluation

● Question: Can we decompress matrix data from memory on the fly to
improve SpMV performance?

● Dataset: 369 representative matrices from TAMU Sparse Matrix
Collection
○ 1M to 8B Nonzeros
○ Sparsity from 9.4E-7 to 19% (Median 0.019%)

● Data Decompression Workload: 8 KB blocks, parallel, across UDP
lanes

15

Compression Effectiveness on CSR

16

● Highlights 7
challenging
matrices, per
Department of
Energy

● ~7 B/nz for 7
~5 B/nz for 369

CSR Nonzero:

Compression Effectiveness

● High variance
● Compression benefits

from symmetric and/or
banded structure in matrix

● Truly remarkable levels of
compression! (< 1 byte
per non-zero)

17

Matrix Decompression Throughput

● UDP does 8KB block in
21.7 𝝁seconds

● Scale across lanes and
multiple UDPs

● Provides >6x geomean
speedup over 32
thread Xeon CPU

18

SpMV Performance with DDR4 Memory

● Memory bound
computation with 2
FLOPS/nonzero

● Gigaflop increase of
2.4x on dataset

● Faster transfer with
DDR4 (100GB/s)

19

Can we decompress on a CPU?

● No, CPU can’t saturate
memory bandwidth

● > 30x slower than
CPU-UDP

● Flexible data
transformation not
possible on CPUs

20

UDP Can Even Keep Up With HBM2

● HBM2 (High
Bandwidth Memory)
1TB/s

● UDP able to keep up
with HBM2 even at
much high Gflops

21

Power Savings

● Saves 51W of 80W
(DDR4, geomean)

● UDP power negligible

● 33W of 64W savings
on HBM2 (see paper)

22

Why use heterogeneous architecture?

● Unproductive to add UDP capabilities to CPU
○ Specialized hardware for specialized applications
○ Software Programmability enables wide variety of use cases

● Huge power savings

● Faster transformation

23

Related Work

● SpMV Software Optimization (Elafrou, ICPP ‘17)
○ Classifier to choose best optimization based on matrix sample

● SpMV Format Optimization (Kreutzer SIAM ‘14)
○ Unified format for wide SIMD units

● SpMV Hardware Acceleration (Fowers ISCA ‘16)
○ FPGA accelerator to expose parallelism across rows

● Compression Hardware Accelerators (Fowers FCCM ‘15)
○ Pipelined LZ and Huffman accelerator (5.6 GB/s)

24

Summary

● Choice of matrix encoding can improve performance (moving
information, not machine datatypes)

● UDP can recode dynamically at memory speeds (100s of GB/s) and low
power usage (< 1W)

● UDP complements CPU with 1800x better energy efficiency on data
transformation

Improved SpMV Performance

● 2.4x performance increase, 1600 Gflops/s (HBM2)
● 50% memory power savings at fixed performance (33W - 51W)

25

Future Work

● SpMV
○ Look into other matrix operations and corresponding storage formats
○ Deep learning training and inference

● UDP
○ Database - faster analytics computations (filtering, parsing, etc)
○ NIC - computation on the wire
○ Storage systems - filtering, real time computations

26

Acknowledgments

● Prof. Andrew A. Chien, Kevin Fang, and LSSG@UChicago

● This research was partially supported by Exascale Computing Project
(ECP) via the Office of Science and the National Nuclear Security
Administration

● Additional support from CERES Center for Unstoppable Computing

27

