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Abstract—Data movement cost is a critical performance con-
cern in today’s computing systems. We propose a heterogeneous
architecture that combines a CPU core with an efficient data
recoding accelerator and evaluate it on sparse matrix computa-
tion. Such computations underly a wide range of important com-
putations such as partial differential equation solvers, sequence
alignment, and machine learning and are often data movement
limited. The data recoding accelerator is orders of magnitude
more energy efficient than a conventional CPU for recoding,
allowing sparse matrix representation to be optimized for data
movement.

We evaluate the heterogeneous system with a recoding accel-
erator using the TAMU sparse matrix library, studying >369
diverse sparse matrix examples finding geometric mean perfor-
mance benefits of 2.4x. In contrast, CPU’s exhibit poor recoding
performance (up to 30x worse), making data representation
optimization infeasible. Holding SpMV performance constant,
adding the recoding optimization and accelerator can produce
power reductions of 63% and 51% on DDR and HBM-based
memory systems, respectively, when evaluated on a set of 7
representative matrices. These results show the promise of this
new heterogeneous architecture approach.

Index Terms—heterogeneous architecture, accelerator, memory
bandwidth wall, sparse matrix multiplication

I. INTRODUCTION

Sparse matrices and computation are important in a wide
range of computations, and represent efficient algorithms. For
example, they are widely used in partial-differential equation
solvers in scientific computing. Graph computations – of in-
terest for social networks, web structure analysis, and recently
machine learning – are also often realized as sparse matrix
computations. Deep learning is an area of growing excitement,
and both training and inference computations typically involve
large sparse matrix computations.

For several decades, the memory system (DRAM access)
has been the critical bottleneck for sparse matrix computation
performance [26], [28], [45]. This is not because DRAM
interfaces could not be scaled up with parallelism, but rather
because of the significant cost associated with the increased
hardware and power required. Consequently, approaches to
sparse matrix computation that decrease the number of DRAM
memory accesses required have been widely studied [15],
[43]. We focus on a heterogenous architecture that adds a
capability for energy-efficient recoding, orders of magnitude
cheaper than that with conventional CPU cores [19], [21]. This

Fig. 1. CPU-UDP Heterogenous Recoding Architecture

heterogeneous architecture can reduce memory bandwidth
requirements, and thereby increase performance on sparse
matrix computation.

In 2019, with transistor features now smaller than 10
nanometers, well past the end of Dennard Scaling and in
the midst of the demise of Moore’s Law, the cost balance
of computing systems has shifted decisively. With 20 billion
transistor chips, arithmetic operations and logic are cheap and
fast, but data movement is the key cost and the performance
limit [36], [47].

In such a world, the choice of how to represent information
(encoding, representation) is a critical factor in computation
and storage efficiency. The design of CPU’s, long optimized
for large and growing datatypes (16-bit, 32-bit, 64-bit, ...) as
well as regular containers (vectors, arrays, hashmaps, trees,
...) makes them ill-suited for fast recoding (representation
transformation). Thus, we consider a heterogeneous approach
that combines a traditional CPU for efficient arithmetic com-
putation with a data transformation accelerator (UDP [21]) for
efficient recoding, as shown in Figure 1. Together, these are
applied to the challenge of sparse matrix computation.

We evaluate this architecture on a wide variety of sparse
matrices taken from the TAMU sparse matrix library [5]. This
is the greatest variety of realistic sparse matrices available, and
is widely viewed as the most representative. The architecture is
modeled based on 14nm CMOS technology and varied DDR4
and HBM2 DRAM memory configurations. Application of
efficient sparse matrix structures based on a first difference
then Snappy [9] compression show a geometric mean of 2.4x
better performance for memory-limited SpMV, and up to 6x
lower memory power at the same performance. These results
suggest that this heterogeneous approach not only provides
overall system benefits, but also efficiency.



Specific contributions of the paper include:
• Proposal of a heterogeneous architecture that utilizes a

data transformation accelerator together with CPU cores
to achieve novel capabilities for recoding

• Evaluation of the heterogeneous architecture, using sparse
matrix computation that yields 2.4x performance im-
provement at fixed memory power

• Evaluation of the heterogeneous architecture, using sparse
matrix computation that yields 30-84% power reduction,
varying by matrix, while providing the same performance

• Demonstrate that optimization across data encodings is
only possible with our heterogeneous architecture. CPU
architectures show >30x worse recoding performance,
eliminating any benefit from data representations.

The rest of the paper is organized as follows. Section
II presents key background on sparse matrix computation,
Section III presents the heterogeneous CPU-UDP architecture,
and discusses how it is applied to accelerate sparse matrix
computation. Section IV describes the methodology for our
evaluation based on the TAMU sparse matrix library, and
careful system modeling. Section V presents our evaluation
of the proposed CPU-UDP architecture on sparse matrix
computation. Section VI presents key related work, showing
the novelty of our approach, and comparing it to prior results.
Finally, Section VII recaps our results and points out some
interesting future directions.

II. BACKGROUND

A. Sparse Matrix Vector Applications

Sparse matrix-vector multiplication (SpMV) has long been
a focus of research and efficient implementation because of
its central and growing importance for a broad range of
scientific computing, numerical methods, graph analysis, and
machine learning. Scientific simulation and modeling such as
computational fluid dynamics [24], [48], cosmological/physics
simulations [12], [42], and dot-matrix sequence alignment
[34], [41], typically solve partial differential equations whose
solutions compute the simulation evolution such as waves,
particle motion, etc. Efficient algorithms focus computational
effort on the most significant space and phenomena, producing
sparse matrix structure, often with only a few percent nonzeros
in matrixes with millions of nonzeor elements.

In graph analysis, most real-world datasets are sparse [2],
[3], [6]. For example, the Netflix prize dataset [3] is a matrix
with 480K users (rows) and 17K movies (cols) but only 100
million of the total possible 8 billion ratings are available.
Similarly, very few of the possible edges are present in web
graphs. It is important to store and manipulate such data as
sparse matrices and keep only non-zero entries.

In machine learning, SpMV is an essential kernel in many
popular algorithms such as sparse principal component anal-
ysis (PCA), or kernelized SVM classification and regression
[38]. Sparse PCA computes a covariance matrix from a sparse
dataset. It involves multiplication of one feature sparse vector
by all other feature vectors in the matrix dataset. Kernelized

SVM classifiers and regression engines compute the squared
distance between two sparse feature vectors by calculating the
inner-product.

B. The Memory Bandwidth Challenge

The challenge of sparse matrix computation, as embodied in
SpMV is that there are few computation operations (FLOPS)
per byte of data. For large sparse matrices in particular,
this produces a severe and growing mismatch between peak
potential computation rate and memory bandwidth. The history
of the challenge goes back to early 1990s. Cray Y-MP C90
enjoys sufficient memory bandwidth and architecture support
for segmented sum operators for SpMV [13]. Nowadays, many
applications require very large sparse matrices, such as the
ones in machine learning, are at the scale of 100 billion
parameters per matrix [30]. Over the past two decades, the
exponential increase in microprocessor computation rate has
far outstripped the slower increase in memory bandwdith. For
example, McCalpin reported in an SC keynote in 2016 [4], that
flops/memory access ratio has increase from from 4 (in 1990)
to 100 (in 2020). This ratio continues to double every 5 years
with no sign of slowing. As a result, a long history of declined
bytes/flops in computer architectures [39] is observed.

Increasing flops is straightforward and easy, which can
be done by simply adding more compute resources on the
chip. On the other hand, the data bandwidth of off-chip main
memory scales poorly, due to pin and energy limitations. The
ITRS projects that package pin counts will scale less than 10
percent per year [39]. At the same time, per-pin bandwidth
increases come with a difficult trade-off in power. A high-
speed interface requires additional circuits (e.g. phase-locked
loops, on-die termination) that consume static and dynamic
power. These factors often make the main memory bandwidth
a key cost, and thereby a system performance bottleneck in
many large SpMV computations.

C. TAMU Sparse Matrix Collection

The TAMU Sparse Matrix Suite Collection [5], is the
largest, and the most diverse representation suite of sparse
matrices available. It is an actively growing set of sparse
matrices that arise in real applications. It is widely used by the
numerical linear algebra community for the performance eval-
uation of sparse matrix algorithms. Its matrices cover a wide
spectrum of domains, including those arising from problems
with underlying 2D or 3D geometry (as structural engineer-
ing, computational fluid dynamics, model reduction, electro-
magnetics, semiconductor devices, thermodynamics, materials,
acoustics, computer graphics/vision, robotics/kinematics, and
other discretizations) and those that typically do not have
such geometry (optimization, circuit simulation, economic
and financial modeling, theoretical and quantum chemistry,
chemical process simulation, mathematics and statistics, power
networks, and other networks and graphs). We use this col-
lection, and selected matrices from the collection, for the
evaluation throughout the paper.



Fig. 2. CSR format, and a basic CSR-based SpMV implementation.

III. A HETEROGENEOUS COMPUTING ARCHITECTURE TO
ACCELERATE SPMV

Performance of sparse matrix computations on conventional
CPUs is limited by memory bandwidth, address generation
and irregular memory references. Typical computing hardware
system balance combined with low flops per matrix value
(non-zero), and representation size makes memory bandwidth
a critical limit. Address generation overheads arise from com-
plex matrix representations, designed to reduce size. Irregular
references arise from these complex formats. We address
all three of these issues by introducing a complementary
computing element that enables a dense representation with
linear packing in memory, eliminating the need for complex
address generation.

In the rest of the section, we first present an overview of
the SpMV basic CPU implementation and its performance.
Next, we describe the proposed heterogeneous CPU-UDP
architecture and outline the optimized computation flow it
enables. We close the section by a brief explanation of the
UDP micro-architecture, whose efficient recoding performance
is an essential enabler of the heterogeneous architecture.

A. Sparse Matrix-Vector Product (SpMV) Overview

We consider the SpMV operation y ← Ax, where A is a
sparse matrix, and x, y are dense vectors. The SpMV kernel
is as follows, (i, j) : ∀ai,j 6= 0 : yi ← yi + ai,j · xj , where
ai,j denotes an element of A. SpMV has a low computational
intensity – for an SpMV, each ai,j is used exactly once, and
requires only two floating point operations. There can be reuse
of x and y, so with optimized implementations, memory access
for A dominates the time to execute SpMV.

B. SpMV on CPU

A common matrix representation for SpMV is Compressed
Sparse Row (CSR), shown in Figure 2. The CSR format for
sparse matrices consists of three arrays: (1) row ptr array

which saves the start and end pointers of the non-zeros of
the rows. It has size m + 1, where m is the number of rows
of the matrix, (2) col idx array stores column indices of the
non-zeros, and (3) val array stores values of the non-zeros.
A simple implementation of SpMV using CSR is shown in
Figure 2. This implementation enumerates the stored elements
of A by streaming both val and col idx, and loads and stores
each element of y only once.

Fig. 3. Single Die CPU SpMV Performance, 100GB/s DDR system (memory-
bandwidth limited).

In Figure 3, we plot the SpMV flops on a CPU-only system,
modeled assuming a system with DDR4 and memory band-
width of 100GB/s.1 The state-of-art SpMV algorithms [15],
[46] and libraries (e.g. BLAS) for a many-core architecture can
easily saturate all the DDR4 channels on a single die. Thus,
CPU SpMV performance is bounded by maximum memory
bandwidth.

C. CPU-UDP Heterogeneous Architecture

Our heterogeneous architecture employs high-performance,
energy-efficient recoding to mitigate the memory bandwidth
limit in SpMV applications. The Unstructured Data Processor
(see Section III-E for description) is such a general-purpose
data recoding accelerator with software programmability. It
sits on the same die with CPU cores and is integrated into the
memory system to reduce the data movement overhead for per-
formance. A single UDP accelerator (64-lanes) is around half
the area of an x86 core + L1, and <5% of a core+associated
L1/L2/L3 caches. So it consumes 1% the area of a 4-core
Xeon chip area [21], and in a modern system perhaps 0.13%
of a modern 32-core chip.

Figure 4 illustrates the CPU-UDP heterogeneous architec-
ture. The CPU has normal access to caches, but can also access
the UDP’s local memory directly. The UDP local memory is
mapped onto the CPU’s address space as uncacheable (data
won’t appear in the cache memory hierarchy) as shown in
Figure 5. When data is recoded into this UDP memory space
(see Figure 7), the library routine initiates lightweight DMA
operations (like memcpy) that transfer blocks of data from the
DRAM to the UDP memory with high efficiency. The DMA

1The 100GB/s estimate is the fastest per-die DDR memory system available
today – 2-die AMD Epyc system [1].



engine [44] acts as a traditional L2 agent to communicate
with the LLC controller. The green lines in Figure 4 show the
idea. A more aggressive approach (not shown) would integrate
UDP seamlessly into the CPU memory system at the word
level. The DMA engine is responsible for moving data to/from
the memory controller from/to UDP local memory. It works
with the snooper sitting on the memory bus that intercepts
the related requests. This is very different from the memory
integration in GPUs and PCIe-attached FPGA accelerators,
which maintains separate address space and suffers from
expensive off-chip data copy across address space.

Fig. 4. CPU-UDP Heterogeneous Architecture, and integration of the UDP
into the chip NoC fabric

Fig. 5. UDP local memory is exposed as part of the CPU Address Space.

D. SpMV on CPU-UDP Architecture

The use of UDP/recoding enables efficient use of the sys-
tem’s memory bandwidth. First, sparse matrix data is streamed
as contiguous address data, allowing the DDR system to be
used at maximum efficiency. Second, the sparse matrix data is
compressed with a custom, aggressive compression format on
top of CSR format that reduces its size significantly. Third, the
matrix is presented as CSR, avoiding any costly address gener-
ation. Together, these techniques maximize the use of available
memory bandwidth to accelerate SpMV. Specifically, we use a
combined Delta, Snappy, and Huffman encoding on top of the
block CSR format to further compress the matrices and reduce
the off-chip memory traffic. The Unstructured Data Processor
(UDP) serves as a powerful programmable recoding engine
for such need, and allows these recoding transformations to
be written in software. This programmability enables a broad

variety of recoding approaches. In Figure 6, the Delta-Snappy-
Huffman encoded CSR matrix blocks are streamed into the
CPU-UDP chip, UDP executes the decompression algorithm
to recover the blocks in CSR format. CPU executes matrix-
vector multiplication on the native CSR format. The tiled
SpMV code only needs to add two function calls for the value
block and the index block decompression, as Figure 7 shown.
This modular approach eases programming effort as well as
avoiding complex addressing computations on the CPU. No
other changes to the SpMV implementation are required. But
in the future, if better representations are discovered, they can
be implemented for the UDP/recode engine to further improve
performance without requiring CPU code change.

Fig. 6. SpMV running on CPU-UDP Architecture.

Fig. 7. Recoding-enhanced SpMV implementation. The recode calls
encapsulate use of the UDP/recode engine and can be customized for future
compressed formats.

E. UDP Micro-architecture

The UDP is a software programmable data transformation
engine, optimized for high performance. Highly effective,
dictionary-based decoding or decompression algorithms intro-
duce many branches between small code blocks. This leads to
poor performance on CPUs. Essentially, the encoded format
contains a sequence of tag-value pairs, with the corresponding
operation to decode the value stored in the tag field. However,
CPUs suffer from poor branch prediction on the operation
dispatch, which can lead to 80% cycle waste due to frequent
pipeline flushes [21].

We briefly describe the unstructured data processor (UDP)
[18], [21], which excels at branch-intensive tasks, especially
data recoding tasks, with high efficiency. The UDP is an
MIMD parallel accelerator (Figure 8) with each lane pairing its
own scratchpad memory bank(s). Parallel lanes exploit the data



parallelism often found in encoding and transformation tasks,
and the lane architecture includes support for branch-intensive
codes, computation on small and variable-sized application-
data encodings, and programmability.

Fig. 8. A 64-lane UDP Accelerator.

The UDP accelerator consists of 64 parallel UDP lanes.
Each lane contains three key units: 1) Dispatch, 2) Symbol
Prefetch, and 3) Action (see Figure 9). The Dispatch unit
handles multi-way dispatch (transitions), computing the tar-
get dispatch memory address for varied transition types and
sources. The Stream Prefetch unit prefetches stream data, and
supports variable-size symbols. The Action unit executes the
UDP actions, writing results to the UDP data registers or the
local memory.

Fig. 9. UDP Lane Micro-architecture.

Multi-way dispatch is the key micro-architecture feature of
the UDP lane to gain efficiency from for branch-intensive
applications. The UDP selects efficiently from multiple targets
by using the symbol (or any value) as a dynamic offset.
Compared to branch offset, multi-way dispatch can process
several branches in a single dispatch operation, and avoids
explicit encoding of many offsets. Compared to branch in-
direct, multi-way dispatch avoids an explicit table of branch
targets, producing placement coupling challenges discussed
below. As a result, compared to both, multi-way dispatch
shuns prediction, depending on a short pipeline for good
performance.

To support multi-way dispatch, the UDP compiler deals
with precise relative location constraints directly. It converts
UDP assembly to machine code, and creates an optimized
memory layout using the Efficient Coupled Linear Packing

(EffCLiP) algorithm [20] that resolves the coupled code block
placement constraints. Together, EffCLiP and UDP achieve
dense memory utilization and a simple, fixed hash function –
integer addition. This enables a high clock rate and energy
efficient execution. In effect, EffCLiP achieves a “perfect
hash” for a given set of code blocks. The UDP assembler
back-propagates transition type information along dispatch
arcs, and then generates machine binaries using machine-level
transitions and actions.

Together, multi-way dispatch for variable symbol size and
scratchpad memory provides each UDP lane high efficiency
for data recoding tasks. MIMD parallelism across lanes pro-
vides UDP sufficient throughput by exploiting the block-
oriented pattern in SpMV applications. A more complete
description of the UDP is available [?], [18], [19], [21].

IV. METHODOLOGY

A. System Modeling

To evaluate the effectiveness of compression, we com-
pare traditional CPU software, Google Snappy version 1.1.3.
compiled using gcc version 5.5.0. The resulting software
was run on a local machine called river-fe running CentOS
Linux 7 (Core). This system has two Intel Xeon E5-2670 v3
processors, each of which has 12 cores operating at 2.30 GHz
and a 30 MB cache. Each socket can support up to 12 threads.
River-fe has 512 GB of RAM (16 x 32 GB TruDDR4 Memory
2133 MHz). The system has 96 TB of total disk storage (8 x 6
TB 7.2K 6 Gbps HDD and 12 x 4 TB 7.2K HDD). However,
we study two more aggressive memory systems, because even
a few cores is plenty to keep up with a 100GB/s memory
system on SpMV.

The UDP-part of the heterogeneous accelerated system is
modeled using a 64-lane cycle-accurate simulator written in
C++. The UDP is implemented in SystemVerilog RTL. Per-
formance reported in prior publication [21] for 28nm CMOS
is extrapolated for a 14nm process and 64-bit extension, which
takes the previously reported speed and power from 1GHz and
864mW to 1.6Ghz and 160mW.2 The Snappy, Huffman, and
Delta performance is measured on the UDP simulator using
their respective versions for UDP.

We use two examples of high-performance memory systems
to estimate memory power savings. For DDR, we use the
AMD Epyc system [1], amongst the most aggressive DDR
systems that with two compute die and eight DDR4 memory
controllers achieves 200GB/s. We assume only one die, so the
corresponding peak is 100GB/s. We model energy costs of
reading DDR DRAM and shipping to the CPU to be 100pJ/bit.
For HBM2, we model a peak bandwidth for 4 stacks to be 1
terabyte/second, and 8pJ/bit [16].

2The performance and power for UDP is heavily dominated by SRAM
access time and energy, so this scaling is based on CACTI estimates and
reflects two full process generation (TSMC 28nm to TSMC 14nm) and the
shift to FinFET transistors.



B. Compression: Delta-Snappy-Huffman

We run compression on matrices sourced from the Texas
A&M University sparse matrix collection. We consider 369
matrices drawn from the largest 20% of those in the collection.
The matrices range in number of non-zeros from 1.0E+6 to
8.0E+8, with a median of 4.9E+6 (about 5 million). The spar-
sity of the selected matrices varies widely from 9.4E-7% (one-
millionth) to 19%, with a median of 0.019%. The set contains
matrices with banded, diagonal, and symmetric structure, as
well as unstructured matrices. We use the bytes per non-zero
element metric to evaluate compression effectiveness, so the
original storage format does not matter. We also consider
seven representative matrices, copter2, g7jac160, gas sensor,
m3dc1 a30, matrix-new 3, shipsec1, and xenon1 to look at
memory system power savings.

We generate a Huffman tree for each sparse matrix by
sampling a subset of the 8KB blocks. The number of blocks
sampled was varied (up to 40% of the total number of blocks)
to get good coverage. Snappy is selected because of its
popularity. Delta encoding of the matrix indices provides large
benefits for matrices that are symmetrical and have diagonal
structure, as it turns arithmetic series into easily compressible
repeating integers. The delta encoding step on its own provides
no benefit, but combined with a compression algorithms helps
to reduce the bytes per non-zero value significantly.

V. EVALUATION

A. Sparse Matrix Transformation Performance

For SpMV, the matrix is kept in compressed form in
memory, brought to the processor thereby reducing the number
of bits moved from the memory, and then it is decompressed
“on the fly”, enabling the actual sparse matrix computation to
proceed unchanged. Our empirical experiments showed that
delta-snappy-huffman produced the best compression results.
So, the decompression process contains these three transfor-
mations, run in the reverse order – huffman decode, snappy
decode, inverse delta – that run as a series of steps in a single
lane of the UDP. First, the fully compressed block is run
through a Huffman decoding program. Then, the data passes
through a snappy decompression stage. Finally, the data is sent
through a delta-decoding step, at which point the block is fully
decompressed back to 8KB. These steps allow the compressed
blocks to be sent from memory to UDP to the CPU. This
transformation can be run in parallel on all 64 lanes of the
UDP, with enough memory per lane to store the 8KB block
and the output of each individual step.

Compressed Size: We compare the effectiveness of Snappy
on a CPU versus the Delta-Snappy-Huffman combination on
the heterogeneous accelerator, the UDP, using the compressed
size (see Figure 10). The baseline CSR representation is
4 bytes (index) and 8 bytes (double float), for a total of
12 bytes per non-zero. The Snappy on CPU (32KB block
size) produces a geometric mean of 5.20 bytes per non-
zero value. On the UDP, Snappy compression on the delta-
encoded blocks, produces a geometric mean of 5.92 bytes per

Fig. 10. Comparing Compressed Size with CPU (Snappy) and UDP (Delta-
Snappy-Huffman).

non-zero value. Adding Huffman encoding further reduces to
5.00 bytes per non-zero. The combined UDP Delta-Snappy-
Huffman surpasses the compression of the CPU based snappy,
despite being limited to a small 8KB block size.

Fig. 11. Bytes per Non-zero Value vs # of Non-zeros.

We show compressed size data in a scatterplot with size for
the largest matrices (all those with more than one million non-
zeros) in the TAMU Sparse matrix collection in Figures 11.
These results show no clear correlation of matrix compression
ratio and size, but good compression overall is achieved by
the Delta-Snappy-Huffman combination.

Transformation Throughput: The UDP takes an geomet-
ric mean of 21.7 microseconds across all 369 matrices to
decompress a single 8KB block. The CPU-UDP heteroge-
neous architecture can effectively decompress these matrices
– Figure 12 shows the decompression rates achieved by a 64
lanes of the UDP for these particular matrices, comparing
them to that achievable on a 32 thread CPU. As Figure 12
demonstrates, a full 64 lane UDP increases the decompression
throughput dramatically over Snappy run on even a 32-thread



Fig. 12. 32-thread CPU vs 64-lane UDP Decompression Throughput.

Fig. 13. Decompression Throughput of a 64-lane UDP vs # of Non-zeros.

CPU. Across the 369 matrix sample set, the UDP increases the
geometric mean decompression throughput 7-fold compared
to the CPU. On the 7 specific matrices, we observe speedups
between 2x and 5x to over 20GB/s. Figure 13 further shows
the scatterplot of the UDP performance detail on 369 matrices.
UDP’s optimized architecture not only delivers much higher
decompression performance, it does so as a much lower power
(0.16W vs. perhaps 100W), and with a tiny silicon area.

B. SpMV on Heterogeneous Architecture Performance

SpMV Performance: We consider the performance of a
SpMV workload on the CPU and CPU+UDP workload, using
DDR4 or HBM2, and using a memory bandwidth bound
computation with 2 flops per non-zero value. As Figures
14 and 15 display, the heterogenous architecture, geomean
Decomp(UDP+CPU), more than doubles the uncompressed
SpMV performance on CPU, geomean Max Uncompressed.
The primary reason for this speedup is due to the smaller
size of the encoded matrix that enables faster transfer to the
computation. Using similar encoded approach a CPU alone

Fig. 14. CPU vs. CPU-UDP SpMV Performance on DDR4 (100GB/s).

Fig. 15. CPU vs. CPU-UDP SpMV Performance on HBM2 (1TB/s).

is impractical, as Decomp(CPU) falls far below the both
Decomp(UDP+CPU) and Max Uncompressed. By offloading
decompression to the UDP, which is able to handle the
memory bandwidth of DDR4 or HBM2, in effect the cost
of the decompression is eliminated (area, power). Hence, by
reducing the average storage usage per non-zero value from
12 to 5, we achieve a 2.4x increase in achieved gigaflops over
CPU only architecture on memory bound SpMV computation.

CPUs for Transformation? It is instructive to consider
the case using CPUs for matrix block decompression rather
than the UDP before SpMV computations (see the light green
bars in Figures 14 and15. The CPU cores provide poor
transformation throughput (Decomp(CPU) + SpMV) limits the
overall performance (>30x slower), and are far from saturating
the memory bandwidth. As a result, CPU-only architectures
cannot exploit flexible data transformation on SpMV. The
CPU-UDP heterogeneous architecture brings the new recoding
capability, opening a new optimization space.

Saving Memory Power: Another way to exploit the new
capabilities of the heterogeneous architecture is to maintain
performance, but reduce the memory system power. UDP
power is modeled as 0.16W per 64-lane UDP with sufficient



Fig. 16. Raw and Net Memory Power Savings for a 100GB/s DDR4 System.

Fig. 17. Raw and Net Memory Power Savings at 1TB/s HBM2 System.

number of UDP’s to meet the desired memory rate to feed the
computation at same performance (100GB/s or 1TB/s out from
UDP’s) The plots in Figures 16 and 17 show memory power
savings, the added UDP power, and the net power benefit.
We compute the maximum memory power by multiplying the
maximum data rate by the energy per bit. For the DDR system,
this is 100GB/s × 100pJ/bit × 8 bits/byte = 80W. For the
HBM2 system, 1000 GB/s (four HBM2 stacks) × 8pJ/bits ×
8 bits/byte = 64W. When evaluating on the 7 representative
matrices the UDP saves an average 51W (out of 80W) when
using DDR4, and 33W (out of 64W) when using HBM2.

VI. RELATED WORK

A. SpMV Software Optimization

Optimizing SpMV on multi-core platforms and GPUs has
received great research interest [10], [11], [15], [17], [33], [46].
These efforts propose clever algorithms and code structure
optimizations to better utilize the memory bandwidth and
the computation power of the processor in a robust fashion.
Merge-based SpMV and runtime decomposition [33] is used
to improve the correlation between runtime and the problem
size. As a result, the performance scaling is more stable

and robust performance gain can be achieved with increased
memory bandwidth and flops. Our heteregeneous architecture
that integrates a UDP can apply to the throughput-oriented
processors and maximize the available memory bandwidth for
better performance. All the software optimization techniques
can be applied to the UDP-integrated system as well.

Another direction in software optimization is auto-tuning.
The SpMV kernels and storage formats are varied and the
optimizer picks the best one for execution [17], [29], [40].
These techniques free the programmers from low-level manual
tuning, but require many different implementations to be built.
Another interesting thread is the SpMV-based operator inte-
gration into traditional data analytical systems [14]. It applies
a classic query-like global optimization across scheduling,
formats, and execution for better performance. Compared to
all of these, our use of a general programmable compression
approach produces simpler code and good performance.

B. SpMV Format Optimization

The naive sequential implementation (Figure 2) is simple
and can be easily parallelized for performance. Many block-
oriented, customized data storage formats and algorithms [10],
[15], [27], [31], [32], [46] have been proposed to further
compress and improve the SpMV performance. For example,
one novel data structure as bitmasked register block [15] is
proposed for multi-threaded SpMV computation. It saves upto
3.5x memory bandwidth on a range of SpMV kernels. The
best suitable encoding format of the matrix is chosen based
on the matrix properties and machine characteristics [29], [40].
In contrast, our approach requires no specialized coding and
format design for the CPU, rather using a single algorithm
written in software for the UDP that reduces data movement
work.

C. SpMV Hardware Acceleration

In the hardware community, efficient SpMV execution is
also an important research question. Multiple designs have
been proposed to build a dedicated accelerator for deep
learning workloads with sparse neural net layers [25], [37],
[49]. In these designs, circuits are hardwired to direct sup-
port multiplication on the sparse NN layers in CSR format.
Others have built the embedded processor and FPGA-based
acceleration for SpMV [23], [35]. The hardware support
for SpMV in these approaches mostly focus on reducing
the hardware resources to saturate the memory bandwidth.
Similarly, GPUs provide massive parallel streaming processors
to accelerate SpMV computations but the performance is still
limited by the DRAM bandwidth even with the advanced
GDDR packaging technology [15], [27], [46]. The scarce
memory bandwidth is the number-one limiting factor for
performance in these hardware systems. In an accelerator-
rich heterogeneous architecture, our UDP accelerator can co-
exist with these accelerators. It further reduces the memory
bandwidth need, feeding more data to the throughput-oriented
accelerators.



D. Compression Hardware Accelerators

Both academia and industry designed and developed hard-
ware accelerators for compression [7], [8], [22]. PCIe at-
tached compression accelerators such as Microsoft Xpress
FPGA acceleration [22] and Intel Quick Assist compression
chipset [8], provides a 2-5GB/s compression throughput per
device. IBM builds an SoC-style network processor (Pow-
erEN) with on-chip compression accelerator [7], achieving
1.5 GB/s throughput. Our heterogeneous UDP accelerator has
several advantages. First, it is programmable, allowing the
compression algorithm to be adapted to the data. This gives
a significant compression ratio benefit. Second, it is high
performance, achieving > 10 GB/s decompression throughput.
And, third, it integrates directly into the memory system,
avoiding movement to a PCI bus. Our CPU-UDP heteroge-
neous architecture benefits from the tight in-memory hierarchy
integration, achieving flexible and cheap data sharing across
CPUs and accelerators.

VII. SUMMARY AND FUTURE WORK

We study the performance and power benefit of apply-
ing a flexible, software programmable data recoding engine
(UDP) to form a heterogeneous architecture for the SpMV
computation. We systematically evaluate the system using the
TAMU sparse matrix library and the result shows a geometric
mean performance benefit of 2.4x, power reduction of 63%
and 51% for DDR and HMB respectively. Together, these
suggest the promise of this new heterogeneous architecture
approach. The CPU-UDP heterogeneous architecture provides
cheap and flexible data recoding, which opens up a few
new research opportunities. Interesting future work includes:
novel and customized encodings on top of CSR for matrices
with particular structures, performance benefit of other sparse
matrix computation using flexible data recoding, and more
critical computation and applications that can benefit from data
recoding.
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