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ABSTRACT
Preventing the external control of devices is an essential part of
modern security systems. More specifically, there has been an in-
crease of focus on ways to exploit covert communication channels
to transfer data between computers that are seemingly “air-gapped”.
These approaches have mainly focused on the exfiltration of data
from secure systems, and are limited by the slow and unreliable
nature of alternative communication methods: light, sound, vibra-
tion, etc. One advantage of such communication channels is a lack
of tracking mechanisms and standard protocols to analyze and de-
tect attacks after the fact. For example, very few modern security
systems for computer hardware include audio recording to deter-
mine if data is being transferred through sound, although network
monitoring is very common. Previous works have demonstrated
that ultrasonic communication across machines is possible, but a
open source configurable package has not been released. We pro-
pose and release SPyAudio: a package that encodes and decodes
audio signals using Hamming codes, and variable rate, number of
signals, and frequencies. We demonstrate that different rates and
signal densities are optimal in different scenarios, and therefore an
configurable approach is best for achieving best performance. We
release the code at https://github.com/arjunrawal4/spyaudio/.
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1 INTRODUCTION
Covert channels have been an area of increased focus for security
analysis, as they represent relatively unexplored areas of potential
threats. Audio channels and the transmission of data through sound
have been studied from various angles such as steganography and
NFC communication. Air-gapping, or the separation of machines
with respect to network and data links, is commonly considered to
be the best practice when trying to isolate systems. This technique
is used to prevent external traffic or data from entering a private
system. However, the idea that data cannot be transmitted without
the use of traditional bands such as Wi-Fi, Ethernet, Bluetooth, USB,
etc. has been shown to be fundamentally untrue, as covert channels
transmitting data through light, sound, and other media has been
shown to be effective.

1.1 Phone to Computer Channel
We study the specific use of an audio channel to convey covert
messages from a source to a receiver. Analysis of covert audio
channels has often focused on transmitting data from computer to

computer, but here we transmit data from a phone to a computer,
reducing the conspicuousness of having a secondary computer
open next to an air-gapped system. Since phones are ubiquitous,
and are often carried on a person, having easy access to a phone
is an extremely low barrier for the attack. Although some systems
may not have microphones, or disable sound collection for security
purposes, the vast majority of devices allow for both playing and
recording sound.

This paper makes the following contributions to covert audio
channels and their analysis.

• We present the attack model in detail, and show that an
attack using a mobile phone is harder to detect and easier to
implement.

• We develop and release a framework for data transmission
through audio with configurable parameters to allow adap-
tation to a wide variety of environments and objectives.

• We evaluate the framework in different scenarios to show
that it is both effective and configuration enables better trans-
mission.

The rest of the paper is organized as follows. Section 2 discusses
related work in the field of audio channels and covert side channels.
Section 3 introduces our signal processing pipeline and discusses
the challenges that transmitting binary data through sound poses.
Section 4 documents the systems on which our evaluation was
conducted. In section 5 we present our configurable framework,
and discuss the design choices that enable easy user configuration.
Section 6 presents the experiments we ran and their results. We
conclude in Section 7, and provide some discussion of potential
countermeasures and future work in the area.

2 RELATEDWORK
This work builds on previous work by Guri et al. [3] that uses sound
to transmit data across a covert audio channel, such as from desktop
computers that only have no network connection. Although this
study provided one of the first major publication discussing the
use of high pitched audio as a covert channel, their analysis of the
effect of tone density and data transmission speed was minimal.
Furthermore, their work did not produce any open source artifacts.

Additional work by Novak et al. [4] focused mainly on trans-
mitting data using sound over very close devices. Although they
were able to achieve a high rate of transfer, 4.9 kB/sec, they did
not attempt to transmit data across a distance, an essential com-
ponent of a covert audio channel. Additionally, they only claim
that their work is nearly inaudible, an assumption that will not
work when the purpose is a covert channel, not simply just simple
communication.

https://github.com/arjunrawal4/spyaudio/
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Won et al. [7] worked on a similar problem of an audio covert
channel, and looked at how the room configuration and background
noise affected their signal processing and data transfer speed. Their
analysis determined optimal devices and placements for the sound
transfer, but did not evaluate the effect on data transfer and relia-
bility that varying number of tones per second, and at a time, can
provide.

Finally, work by Shwartz and Birk [6] demonstrates the capa-
bilities of a covert audio channel between a virutal machine and a
host, bypassing sandboxing. This overcomes the traditional audio
challenge of unreliable communication as the sender and receiver
are on the same machine. Although this attack may work in some
cases, and is much faster at transmitting data, it is limited in scope.
Furthermore, this approach required the use of expensive audio
monitors to achieve good performance, an assumption that we do
not require.

3 SIGNAL PROCESSING DESIGN
The main challenge of an audio transmission challenge is the unre-
liability and noise associated with an audio signals sent through
open air. To combat human detection, we require that all sounds
are above the commonly accepted threshold for adult (above age
21) human hearing, 18000 Hz. It is possible that some humans can
detect sounds above 18000 Hz, but at the decibels used for our trans-
mission this is unlikely, and has been verified with individuals age
ranging from 21 to 35 (n=10). At these frequencies, audio processing
on general purpose devices is fairly unreliable, as the hardware is
not designed for high fidelity processing at ultrasonic frequencies.

Figure 1: Demonstration of Signal Encoding and Decoding

3.1 Fourier Transformation
We utilize a Fast Fourier Transform to analyze the incoming sound
data for features which we then transform to binary signal which
can be converted to plaintext data. When encoding data, we layer
signals at different frequencies on top of each other to increase
throughput. We see that using an FFT we can decode the presence
of individual signals at certain frequencies as shown in Figure 1.The
Fourier Transform is used to decompose a sample of a signal over
time to a set of frequencies and their relative strengths. Simply
put, this allows us to take a small sample of an audio signal and
determine which frequencies are being played. This is highly noisy
process, as the signals are inexact and transfer over air distorts a
portion of them. When transfer is done only through high fidelity
audio, such as 3.5 mm audio cables, the signal accuracy approaches
100%. The challenges with the Fourier transform is to properly
align the start and stop of the signals to properly process each time
interval. For example, if the sliding window used by the receive is
off by 50%, it will receive half of the audio signal from each of the
two sender windows it views, and produce a noisy and inaccurate
response. We solved this problem by introducing a starting and
ending tone, which are fully distinct from the tones used in sending
actual data.

3.2 Phase Synchronization
We first record all audio input to the receiver over a time during
which a message is sent. To synchronize the audio signal, we run
a Fourier transform on the tone length from 10 intervals within
each tone length. For example, with tone length 100, we process
an FFT for interval (0, 100), (10, 110), . . . (100, 200). Once we find a
subsection where the value of the target start frequency, 𝐹𝑠 > 𝑇𝑠
, where 𝑇𝑠 is a threshold used to distinguish actual signal from
noise, we advance to the end of the section and begin processing
the signal. The subdivision by 10 means that at most we are 10%
off from the correct window divisions, leading to higher fidelity
with lower processing overhead. However, this is a value which
can be adjusted for particular cases. During the standard signal
processing pipeline for actual data, we process each chunk of time
of the length of one tone, and then convert it to text using a process
described later. We additionally test if the value of the target end
frequency, 𝐹𝑒 > 𝑇𝑒 , where 𝑇𝑒 is a threshold used to distinguish
actual signal from noise, and finish processing the signal.

3.2.1 Threshold Selection. From our experimentation, the thresh-
olds used to determine valid signals from noise are somewhat vari-
able, and depend on the signal strength and environmental condi-
tions. For this reason, we decided to use a parameter search over
the possible values in our decode pipeline, and return the one that
succeeds the best. Specifically, our code searches over all the fre-
quencies that could have valid data transmitted, and determines
if a signal is present there using the following metrics. We denote
the signal strength at 𝑥 with 𝐹𝑥 , the strength threshold 𝑇𝑟 , the step
coefficient 𝑘 , and difference coefficient 𝐷 .

(1)
𝐹𝑥 > 𝑇𝑟

(2)
𝐷 ∗ 𝐹𝑥 (1+𝑘) < 𝐹𝑥
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(3)

𝐷 ∗ 𝐹𝑥 (1−𝑘) < 𝐹𝑥

This checks a few different constraints to validate that a signal is
being sent. First, it requires that there is some significant signal at
that frequency. Then we adjust the value of the frequency by scaling
it by 1 ± k. A constant shift produces difficulties when frequencies
are close together, so a scale was chosen. We then multiply the
strength at these two “boundary” signals by𝐷 , and ensure that they
still remain lower than the frequency at 𝐹𝑥 . This ensures that at
some frequencies bordering the chosen frequency, the strength of
signal is significantly lower than the signal at the chosen frequency.
In practice, we search over values of 𝐷 and 𝑇𝑟 to find the best split
which minimizes errors in the signal processing.

4 METHODOLOGY
We use an iPhone 7 to play sounds using a WAV format. The audio
device uses a stereo speaker, and is capable of playing sound at up
to 73.2 DB [1]. On the recieving side, we use a 2016 MacBook Pro.
According to Apple [2], this device has “Studio-quality three-mic
array with high signal-to-noise ratio and directional beamforming”.
Both of these devices are commonly used, demonstrating the ease
of this attack on standard commercial hardware. The software
is developed fully in Python 3.7.6, with PyAudio 0.2.11, numpy
1.18.1, scipy 1.2.1 and the default wav file. We use a sample rate of
44,100 Hz, a common sampling frequency for audio processing. The
analysis was done in a private study room approximately 5 feet by
10 feet, with decent sound isolation.

5 SOFTWARE PACKAGE
We develop and release a configurable framework to enable covert
audio channels in a variety of environments and objectives. We
expose the following configurable parameters, sample length 𝑙 , base
frequency 𝐹0, tones per sample 𝑁 , and frequency interval 𝑠 . We use
a standard procedure using Big-Endian representation and utf-8
to convert text into a binary stream. This binary stream can then
be divided into chunks of size 𝑁 , and signal sent at frequency 𝐹𝑖
represents a 1 at that value, and the absence a 0 at that value. We use
biological mechanisms as an inspiration for our error correction.
We use a fixed time offset to deal with deletion or insertion errors,
as even if the signal for a time interval is blocked (via white noise
or other environmental factors), values will still be decoded. This
will possibly effect one text character, but will not cause cascading
problems. Point changes, as in the flipping of a single bit during
transmission are harder to detect and correct and lead to incorrect
characters being printed in the final output.

We see that the audio signal is quite noisy, and furthermore
missing bits can cause extreme complications when the data is then
converted to text. To deal with the prevalence of random errors,
we use an error correcting code. We implement the Hamming(7,4)
code in numpy using matrix multiplication to add redundancy to
the communication, increasing reliability. This procedure allows
for one bit to be flipped and still maintain perfectly accurate final
output. This approach is still not highly accurate, but we see that
other less efficient approaches such as triple modular redundancy
could be used if high data reliability is required. Other techniques

include interleaving to prevent an environmental factor from fully
obfuscating a section of the plaintext.

r=0.02 r=0.04 r=0.08
n=2 0.1013 0.1142 0.1875
n=4 0.0854 0.0417 0.0042
n=8 0.399 0.1094 0.0586

Table 1: Accuracy of Data Transfer (1ft)

r=0.02 r=0.04 r=0.08
n=2 0.1336 0.1207 0.0216
n=4 0.1521 0.0062 0.0375
n=8 0.1133 0.1191 0.1094

Table 2: Accuracy of Data Transfer (3ft)

r=0.02 r=0.04 r=0.08
2 0.5065 1.0 1.0
4 0.2375 0.1896 0.0792
8 0.1816 0.1875 0.1699

Table 3: Accuracy of Data Transfer (9ft)

Figure 2: Accuracy of Data Transfer (1ft)

6 EVALUATION
We evaluate the effectiveness of various configurations of the fol-
lowing parameters: sample length 𝑙 , base frequency 𝐹0, tones per
sample 𝑁 , and frequency interval 𝑠 . During these experiments, we
maintain a parameter search over the set of possible combinations
of 𝑇𝑖 , the threshold coefficients, and 𝐷 , the difference coefficient.
We consider the maximum value for transmission accuracy over
the parameter choices for 𝑇𝑖 and 𝐷 . We then run the following
experiments.
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Figure 3: Accuracy of Data Transfer (3ft)

Figure 4: Accuracy of Data Transfer (9ft)

(1) Effect of increasing rate of tones per second on throughput
and accuracy (Silent background, fixed 3 ft distance)

(2) Effect of increasing number of tones played on once on
throughput and accuracy (Silent background, fixed 3 ft dis-
tance)

(3) Effect of distance on accuracy (Silent background)
(4) Effect of background noise on accuracy
(5) Effect of error correcting codes on accuracy
To evaluate, we use the message “Oh, it’s such a perfect day. I’m

glad I spent it with you”, and proceed using the experimental setup
described in Section 4. We use 3 trials and take the best result, as
the data transfer is quite noisy.

6.1 Rate of Tones
We first adjust the rate of tones per second, and analyze the effect
that this has on both data transmission rate, and the accuracy of

Figure 5: Maximum Data Transfer Rate

Figure 6: Accuracy of Data Transfer with Background Noise

the data sent. As Figure 5 demonstrates, the shorter the tones (𝑟 ),
the faster the possible data transfer can occur. However, as Tables
1, 2, and 3 demonstrate, the effective error rate for shortening the
tone duration is not very clear. Generally, the longer tones lead to
greater accuracy, which follows intuition. Simply put, a longer tone
enables a more accurate and less noisy signal, which can then be
decoded more effectively. However, due to general variance, this
trend is also somewhat noisy.

6.2 Tones Per Interval
We also compare the effect of increasing the number of tones being
used in parallel, and its effect on data transfer and accuracy of
the data sent. We see that similarly to rate, the more tones per
interval (𝑛), the faster the possible data transfer can occur. Figure
5 demonstrates this trend. Additionally, for data accuracy, we see
that the 4 tone system seems to perform the best overall, but there
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Figure 7: Accuracy of Data Transfer with Error Correction

are some variances in different cases. It would seem that adding
additional tones would cause a decrease in accuracy as they could
interfere with each other and cause signal distortion, but it appears
that there is a “sweet spot” where this distortion is minimized. One
possible explanation for the higher error rate with only two tones
is the length of transmission is increased, and so air patterns and
other environmental factors can cause a larger effect on a longer
duration.

6.3 Distance
We analyze the effectiveness of this communication method over
different distances. We compare 1 foot, 3 feet, and 9 feet. As Fig-
ures 2, 3, and 4 demonstrate, the accuracy generally decreases as
distance increases. This follows our general intuition about sound,
as the distribution of the sound waves decreases at a quadratic rate,
and therefore accuracy will diminish rapidly. However, we see that
by choosing the right parameters at a large distance, we can still
maintain an error rate below 0.2. This demonstrates that correct
configuration is essential to providing a reliable data transmission,
as other configurations have an effect data transfer of 0. We at-
tempted farther distances, and found that data transfer was fully
impractical after around 20 feet, although with specialized audio
equipment, this distance might be much further.

6.4 Background Noise
We evaluate the capabilities of data transfer in the face of external
noise. Due to equipment constraints, we were unable to use sound
detection equipment to accurately gauge the volume of background
noise, so all values listed are relative to the maximum volume on
a secondary iPhone 7. We used the secondary phone to generate
audio signals aligned to be orthogonal to the transmission path. In
spite of the experimental obstacles, we still demonstrate the the
effect of background noise is not insurmountable. We experiment
using an mid range configuration from the earlier experiments,
𝑑 = 1, 𝑛 = 4, 𝑟 = 0.04. We see that music (Space Song - Beach
House) provides minimal interference with the signal, at both low

and high volumes. It appears that the lower error rate with 0.25
music is an anomaly. However, white noise and conversation both
provide somewhat effective barriers to data transfer, although the
underlying error rate increase (3-5x) still allows data transfer and
can be assisted by the use of error correcting codes.

6.5 Error Correcting Codes
Error correcting codes have an effect on both the data transfer rate
and the reliability of the data stream. We experiment using an mid
range configuration from the earlier experiments, 𝑑 = 1, 𝑛 = 4, 𝑟 =
0.04. As showin in Figure 7, Hamming (7,4) and Triple Modular
Redundancy provide great increases in data reliability. In other
experiments, Triple Modular Redundancy proved to be more ef-
fective than Hamming codes, as it can tolerate 1 error for every 3
bits whereas Hamming is only able to correct 1 error for every 7
bits. Both methods slow down effective data transfer drastically,
with Hamming decreasing transfer rate by 43% and Triple Modu-
lar Redundancy cutting transfer by 66%. However, the benefit of
a configurable and adaptive construction is that these codes can
be turned on and off to deal with more and less reliable situations.
Furthermore, when error rates are very high, more drastic correc-
tion such as 9x modular redundancy can be used if transfer rate is
less important.

6.6 Evaluation Summary
Overall, we see that covert audio data transfer is a practical at-
tack on systems. Furthermore, we demonstrate that a variety of
parameters, length of tones, tones per interval, and error correc-
tion can be used to adapt to different distances, background noise,
and environmental factors. Further analysis to show the effect of
varying frequency intervals and starting frequencies could also
be done with likely similar results. Our experiments demonstrate
that background noise may not be an effective countermeasure,
unless it reaches very high volumes. However, preventing close
access to a machine would stop data transfers, as we were unable to
maintain any transfer from more than 20 ft. Frequency limitation
also dampens the possible data transfer rates and transfer reliability.
Because we restrict ourselves to non-human hearable ranges, we
lose a large part of the speaker range, and the most powerful range.
iPhone speakers and MacBook Pro microphones are not designed
to handle pitches outside of human hearing, and so their effective
volume and capture is much lower than other tones. We did not
formally study the transfer across all frequencies, but anecdotally,
this would enable much higher values for 𝑛, potentially up to 64,
increasing data transfer by more than 8x.

7 CONCLUSION
7.1 Possible Countermeasures
There are a number of possible countermeasures that systems can
utilize to prevent these types of attacks. First, preventing other
devices from being in the same room as the vulnerable system is
becoming less and less effective, as devices become smaller and
more capable. This attack, implemented on a phone, could likely
also work from a watch or other small audio device. A better ap-
proach, therefore, is through the vulnerable device itself. Devices
should not allow audio access whatsoever if proper security is to
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be achieved. Attacks similar to this one have been shown to be
possible even if a microphone is not available. Finally, a somewhat
effective countermeasure is to have each device emit a form of sonic
interference such as emitting white noise at a low volume.

7.2 Future Work
Although manual configuration is a good intermediate step for cre-
ating reliable sound channels, automated parameter configuration
is the ultimate goal. Future work could apply machine learning to
automatically configure transmission protocols based on the envi-
ronment and adjust to changing sonic patterns or environmental
interference. Other potential areas of future exploration include
transmission from phone to phone, with the potential for covert
and untraceable communication. Since the origin of a sound is hard
to pinpoint, some form of secure voting could be implemented us-
ing this technique, as a receiver could tell that certain frequencies
were present, just not exactly who they were coming from. There
has also been work focusing on deep-learning based approaches to
extracting data from noisy signals by Sajedian and Rho [5]. This
work uses a neural network to deliver fast frequency predictions
from a noisy signal, and could be used to provide a more accurate
detection of signals.

7.3 Summary
We see that building an audio covert channel between commercially
available devices is not only possible, but practical. We demonstrate
data transfer from mobile phones to laptop computers using on
board audio devices. Moreover, this technology can be configured
to achieve good performance in a variety of situations.
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