Exploiting Domain-Specific Data Properties to Improve Compression for High Energy Physics Data

Arjun Rawal University of Chicago

June 2, 2020

High Energy Physics in a Nutshell

Less than 0.1% of data recorded, but still more than 100 PB per year!

Projected Data Growth

• Data storage requirements quickly outpace budget constraints.

How Does CERN Store Data?

- Replicated for reliability and access speed
- Data moves from Tier-1 to Tier-2 for analysis and simulation
- Stored using

How Does CERN Store Data?

- Replicated for reliability and access speed
- Data moves from Tier-1 to Tier-2 for analysis and simulation
- Stored using
 - Tape (350PB)
 - HDD (280PB)
 - SSD (40PB)

- High energy physics data is costly to store (exabytes of data, millions of \$)
- Current formats prioritize analysis performance over storage size

We utilize modern compression algorithms, domain-specific techniques, and aggregated storage to reduce storage requirements for archived high energy physics data.

Furthermore, we show that compression focused storage in a production environment can save petabytes of disk space while only requiring a minimal increase in computational resources.

Data Compression

Data Compression Overview

LOSSLESS

• Lossless vs. Lossy

Data Compression Overview

LOSSLESS

- Lossless vs. Lossy
- Tradeoff between speed & reduction in size

Data Compression Overview

- Lossless vs. Lossy
- Tradeoff between speed & reduction in size
- Common general purpose software
 - snappy
 - zlib
 - std
 - Iz4
 - Izma
 - brotli

Compressed

Restored

LOSSLESS

• Repeated Patterns

Dictionary

	Sequence of Symbols

Buffer Sliding Window

- Repeated Patterns
- Large Windows

Dictionary

	Sequence of Symbols

Buffer Sliding Window

HEP Data Storage

- Massive scientific toolkit written in C++
- Used for data processing, statistical analysis, visualisation, and storage

• Massive scientific toolkit written in C++

- Used for data processing, statistical analysis, visualisation, and storage
- Tree structure for storing data

How Does ROOT Compress Data?

- Basket level compression (zlib)
- Optimized for analysis workloads!

How Does ROOT Compress Data?

- Basket level compression (zlib)
- Optimized for analysis workloads!
- Dozens of papers on providing "balance" between size and analysis performance

- Current compression ratio > 5
- Metadata and structured objects are hard to analyze and easy to compress.

- Current compression ratio > 5
- Metadata and structured objects are hard to analyze and easy to compress.
- Therefore, we focus on floating point and integer data.

1. What techniques can we use to better compress HEP data?

- 1. What techniques can we use to better compress HEP data?
- 2. How much storage space can we save by applying these techniques?

- 1. What techniques can we use to better compress HEP data?
- 2. How much storage space can we save by applying these techniques?
- 3. Can this be implemented in a cost effective and scalable way for HEP experiments?

Approach

1. Aggregate Data and Use Modern Algorithms

- 1. Aggregate Data and Use Modern Algorithms
- 2. Exploit Patterns and Repetition

• Earlier algorithms like zlib have window sizes between 256 bytes and 32 KB

- Earlier algorithms like zlib have window sizes between 256 bytes and 32 KB
- $\bullet\,$ Modern algorithms like zstd have window sizes between 256 KB and 2GB+

- Earlier algorithms like zlib have window sizes between 256 bytes and 32 KB
- $\bullet\,$ Modern algorithms like zstd have window sizes between 256 KB and 2GB+
- However, ROOT basket sizes are usually between 8 KB and 8 MB to enable fast data access.

- Earlier algorithms like zlib have window sizes between 256 bytes and 32 KB
- Modern algorithms like zstd have window sizes between 256 KB and 2GB+
- However, ROOT basket sizes are usually between 8 KB and 8 MB to enable fast data access.

Key Insight

Larger windows only provide an advantage if data is stored in large enough blocks.

- If we know the type or distribution of a dataset, we can use that information to aid in compression or to pre-train an algorithm.
- These techniques may not provide data reduction on their own.

- If we know the type or distribution of a dataset, we can use that information to aid in compression or to pre-train an algorithm.
- These techniques may not provide data reduction on their own.

Delta Encoding

Take the difference between successive elements: Original Datastream: [1,2,3,4,5,7,9,8,...] δ -encoded Datastream: [1,1,1,1,1,2,2,-1,...]

Insight 2: Exploit Patterns and Repetition

• Sign and exponent portions are more likely to be similar across values.

Insight 2: Exploit Patterns and Repetition

- Sign and exponent portions are more likely to be similar across values.
- Single precision floating point values can be "split".

Insight 2: Exploit Patterns and Repetition

- Sign and exponent portions are more likely to be similar across values.
- Single precision floating point values can be "split".

Key Insight

By aligning the same components across values, we increase the similarity within blocks.

We utilize modern compression algorithms, domain-specific techniques, and aggregated storage to reduce storage requirements for archived high energy physics data.

We utilize **modern compression algorithms**, domain-specific techniques, and aggregated storage to reduce storage requirements for archived high energy physics data.

1. Move from zlib to zstd

We utilize modern compression algorithms, **domain-specific techniques**, and aggregated storage to reduce storage requirements for archived high energy physics data.

- 1. Move from zlib to zstd
- 2. Delta encoding and float splitting

We utilize modern compression algorithms, domain-specific techniques, and **aggregated storage** to reduce storage requirements for archived high energy physics data.

- 1. Move from zlib to zstd
- 2. Delta encoding and float splitting
- 3. Compress on branch level granularity

We utilize modern compression algorithms, domain-specific techniques, and aggregated storage to reduce storage requirements for archived high energy physics data.

- 1. Move from zlib to zstd
- 2. Delta encoding and float splitting
- 3. Compress on branch level granularity
- 4. Pretrain compression dictionaries

Evaluation

• Largest HEP data release in history (1PB)

• Mix of end user data and analysis objects

- Largest HEP data release in history (1PB)
- Mix of end user data and analysis objects

 $\bullet\,$ Not feasible to experiment on petabytes of data $\to\,$ Sampling

- Largest HEP data release in history (1PB)
- Mix of end user data and analysis objects

- $\bullet\,$ Not feasible to experiment on petabytes of data $\to\,$ Sampling
- Extract data and then evaluate compression

- Largest HEP data release in history (1PB)
- Mix of end user data and analysis objects

- $\bullet\,$ Not feasible to experiment on petabytes of data $\to\,$ Sampling
- Extract data and then evaluate compression
- Compression Ratio (CR): Uncompressed Size Compressed Size, reflects how compressed data is from the original.

Better Compression Algorithms

- Compression level is a proxy for resource utilization (higher = more resources)
- zstd delivers > 5% better compression ratio than zlib

Better Compression Algorithms

- Compression level is a proxy for resource utilization (higher = more resources)
- zstd delivers > 5% better compression ratio than zlib
- zlib, level=5 significantly outperforms ROOT compression.

Better Compression Algorithms

- Compression level is a proxy for resource utilization (higher = more resources)
- zstd delivers > 5% better compression ratio than zlib
- zlib, level=5 significantly outperforms ROOT compression. Why?

Exploit Data Layout

- Window size is the amount of data the algorithm can view
- ROOT basket sizes can range from 2^{10} to 2^{22} bytes, but branches are between 2^{12} and 2^{30} bytes

Exploit Data Layout

- Window size is the amount of data the algorithm can view
- ROOT basket sizes can range from 2^{10} to 2^{22} bytes, but branches are between 2^{12} and 2^{30} bytes
- zstd windows can be up to 2³¹ bytes

Exploit Data Layout

- Window size is the amount of data the algorithm can view
- ROOT basket sizes can range from 2^{10} to 2^{22} bytes, but branches are between 2^{12} and 2^{30} bytes
- zstd windows can be up to 2³¹ bytes

Conclusion

Compressing at the granularity of branches enables better CR (full windows).

Delta Encoding and Float Splitting

Floating point data

Delta Encoding and Float Splitting

Conclusion

Delta compression, used selectively, improves integer CR by 5%. Floating point splitting, used selectively, improves float CR by 4%.

General Takeaway

CMS Data

ATLAS Data

General Takeaway

CMS Data

ATLAS Data

Conclusion

We reduce data storage usage by up to 10% with zstd, level=9 and 15% with zstd, level=22.

Compression at Production Scale

- $\bullet\,$ Common data use case is Filtering $\rightarrow\,$ Selection $\rightarrow\,$ Visualization
- HEP data access is mainly > 95% reads.
- Data can be compressed offline, but **must** be decompressed immediately when needed for analysis.

- $\bullet\,$ Common data use case is Filtering $\rightarrow\,$ Selection $\rightarrow\,$ Visualization
- HEP data access is mainly > 95% reads.
- Data can be compressed offline, but **must** be decompressed immediately when needed for analysis.

Key Insight

As long as decompression is done quickly, slower compression is not a barrier to analysis performance.

• Data storage needs expected to grow rapidly

- Data storage needs expected to grow rapidly
- Use better algorithms, compression techniques, and aggregation to get better compression ratio

- Data storage needs expected to grow rapidly
- Use better algorithms, compression techniques, and aggregation to get better compression ratio
- To enable good analysis performance, data reads must be fast

- Data storage needs expected to grow rapidly
- Use better algorithms, compression techniques, and aggregation to get better compression ratio
- To enable good analysis performance, data reads must be fast

Scaling Up to Production

Design compression strategies to reduce data storage requirements, while delivering good read performance.

- **Compression Throughput**: Uncompressed Size Time to Compress, shows single core throughput.
- **Core-Hour**: The amount of work done in one hour by a single core on the evaluation system (2.8 GHz Intel Xeon).

Compression and Decompression Throughput

Each dot represents a different configuration for each algorithm.

Compression and Decompression Throughput

Each dot represents a different configuration for each algorithm.

Conclusion

Decompression performance is constant regardless of compression settings.

2 Selected Strategies

ROOT Configuration Changes

Extracted Branch-Level Storage

ROOT Configuration Changes

Extracted Branch-Level Storage

- Switch compression algorithms to zstd, level=9
- Add delta encoding and float splitting to ROOT library
- Minimal computational overhead

ROOT Configuration Changes

- Switch compression algorithms to zstd, level=9
- Add delta encoding and float splitting to ROOT library
- Minimal computational overhead

Extracted Branch-Level Storage

- Compress and store in aggregate blocks
- Use zstd, level=22 and other techniques
- Need additional cores to handle reads and writes

Saving Storage Space (2019)

• Save up to **12 PB** (15%)

Saving Storage Space (2019)

- Save up to **12 PB** (15%)
- $\bullet~2.5M~core-hours < 1\%~of$ ATLAS 2019 usage

Saving Storage Space (2019)

- Save up to **12 PB** (15%)
- $\bullet~2.5M~core-hours < 1\%~of$ ATLAS 2019 usage
- Exchange storage size for computation
- Many future areas for exploration

Saving Storage Space (Projected)

• Total savings of more than 250 PB of data in 2034

Saving Storage Space (Projected)

- Total savings of more than 250 PB of data in 2034
- Even with CPU costs, still represents savings of millions of dollars

Saving Storage Space (Projected)

- Total savings of more than 250 PB of data in 2034
- Even with CPU costs, still represents savings of millions of dollars
- Better savings if analysis designed to work outside of ROOT

Related Work

• Configuration selection for workload (Shadura 2019, ATLAS 2020)

Speed up R/W times by $>2 {\rm x},$ but limited to working within ROOT; views compression as black-box

• Configuration selection for workload (Shadura 2019, ATLAS 2020)

Speed up R/W times by $>2 {\rm x},$ but limited to working within ROOT; views compression as black-box

- Lossy approaches and filtering
 - Lossy floating point and autoencoder compression (Mete 2020, Heinrich 2019)

Necessarily loses information, so requires scientific buy-in; can be combined with our approach

• Configuration selection for workload (Shadura 2019, ATLAS 2020)

Speed up R/W times by $>2 {\rm x},$ but limited to working within ROOT; views compression as black-box

- Lossy approaches and filtering
 - Lossy floating point and autoencoder compression (Mete 2020, Heinrich 2019)
 Necessarily loses information, so requires scientific buy-in; can be combined with our approach
- Domain specific compression (Non-HEP)
 - Learned compression for objects (Chen 2017, Sanchez 2019) Can be integrated into our approach to create specific compression techniques for any object

• Configuration selection for workload (Shadura 2019, ATLAS 2020)

Speed up R/W times by $>2 {\rm x},$ but limited to working within ROOT; views compression as black-box

- Lossy approaches and filtering
 - Lossy floating point and autoencoder compression (Mete 2020, Heinrich 2019)
 Necessarily loses information, so requires scientific buy-in; can be combined with our approach
- Domain specific compression (Non-HEP)
 - Learned compression for objects (Chen 2017, Sanchez 2019) Can be integrated into our approach to create specific compression techniques for any object

Summary and Future Work

1. Evaluated performance of compression algorithms and strategies on HEP data

- 1. Evaluated performance of compression algorithms and strategies on HEP data
- 2. Designed strategies to improve compression ratio for data storage

- 1. Evaluated performance of compression algorithms and strategies on HEP data
- 2. Designed strategies to improve compression ratio for data storage
- 3. Achieved data storage reduction of 15% on ATLAS DAOD (82 GB \rightarrow 70 GB)

- 1. Evaluated performance of compression algorithms and strategies on HEP data
- 2. Designed strategies to improve compression ratio for data storage
- 3. Achieved data storage reduction of 15% on ATLAS DAOD (82 GB ${\rightarrow}70$ GB)
- 4. Modeled scale-up for ATLAS (Save >250 PB by 2035)

1. Can strategies like float splitting be generated automatically for any datatype/distribution?

2. Could data access patterns inform compression strategy choices?

3. Can storage acceleration be used to offload computational cost to accelerators?

Acknowledgements

Prof. Andrew A. Chien

Chen Zou

Ilija Vukotic

Prof. Rob Gardner

Large-Scale Systems Group MANIAC Lab

Questions?

Backup Slides

• Train 1 dictionary per datatype with zstd

- Train 1 dictionary per datatype with zstd
- Dictionary training does not universally improve compression ratio
- However, we realize a 1% improvement in CR when pretraining on small branches (< 8KB)

Aggregate Strategies (Across Files)

Key Insight

Aggregating across files can improve compression ratio by up to 2%.

Other Techniques Can Improve Throughput

• Pretraining improves compression throughput by **3**x

- Pretraining improves compression throughput by **3x**
- Delta encoding and other passes run at > 300 MB/s

- Pretraining improves compression throughput by **3**x
- Delta encoding and other passes run at > 300 MB/s
- Creating large baskets is not expensive (100 MB/s)

Decompression Throughput for Zstd Variations

Key Insight

<code>zstd</code> with aggregation and dictionary do not have a significant effect on decompression throughput, all still ${>}575$ MB/s.