
Exploiting Domain-Specific Data
Properties to Improve Compression for

High Energy Physics Data

Arjun Rawal
University of Chicago

June 2, 2020

1 / 43



Context

2 / 43



High Energy Physics in a Nutshell

Less than 0.1% of data recorded, but still more than 100 PB per year!
3 / 43



Projected Data Growth

Data storage requirements quickly outpace budget constraints.

4 / 43



How Does CERN Store Data?

Replicated for
reliability and access
speed

Data moves from
Tier-1 to Tier-2 for
analysis and simulation

Stored using

Tape (350PB)
HDD (280PB)
SSD (40PB)

5 / 43



How Does CERN Store Data?

Replicated for
reliability and access
speed

Data moves from
Tier-1 to Tier-2 for
analysis and simulation

Stored using
Tape (350PB)
HDD (280PB)
SSD (40PB)

5 / 43



Problem Statement

High energy physics data is costly to store (exabytes
of data, millions of $)

Current formats prioritize analysis performance over
storage size

6 / 43



Our Approach

We utilize modern compression algorithms,
domain-specific techniques, and aggregated storage to
reduce storage requirements for archived high energy
physics data.

Furthermore, we show that compression focused storage
in a production environment can save petabytes of disk
space while only requiring a minimal increase in
computational resources.

7 / 43



Data Compression

8 / 43



Data Compression Overview

Lossless vs. Lossy

Tradeoff between speed & reduction
in size

Common general purpose software
snappy
zlib
zstd
lz4
lzma
brotli

9 / 43



Data Compression Overview

Lossless vs. Lossy

Tradeoff between speed & reduction
in size

Common general purpose software
snappy
zlib
zstd
lz4
lzma
brotli

9 / 43



Data Compression Overview

Lossless vs. Lossy

Tradeoff between speed & reduction
in size

Common general purpose software
snappy
zlib
zstd
lz4
lzma
brotli

9 / 43



What Enables Good Compression?

Repeated Patterns

Large Windows

10 / 43



What Enables Good Compression?

Repeated Patterns

Large Windows

10 / 43



HEP Data Storage

11 / 43



The ROOT Framework

Massive scientific toolkit
written in C++

Used for data processing,
statistical analysis,
visualisation, and storage

Tree structure for storing data

12 / 43



The ROOT Framework

Massive scientific toolkit
written in C++

Used for data processing,
statistical analysis,
visualisation, and storage

Tree structure for storing data

12 / 43



How Does ROOT Compress Data?

Basket level compression (zlib)

Optimized for analysis workloads!

Dozens of papers on providing “balance” between size and
analysis performance

13 / 43



How Does ROOT Compress Data?

Basket level compression (zlib)

Optimized for analysis workloads!

Dozens of papers on providing “balance” between size and
analysis performance

13 / 43



What “Kind” of Data is Being Stored?

Current compression ratio > 5

Metadata and structured objects
are hard to analyze and easy to
compress.

Therefore, we focus on floating
point and integer data.

ATLAS Data

14 / 43



What “Kind” of Data is Being Stored?

Current compression ratio > 5

Metadata and structured objects
are hard to analyze and easy to
compress.

Therefore, we focus on floating
point and integer data. ATLAS Data

14 / 43



Key Questions

1. What techniques can we use to better compress HEP
data?

2. How much storage space can we save by applying
these techniques?

3. Can this be implemented in a cost effective and
scalable way for HEP experiments?

15 / 43



Key Questions

1. What techniques can we use to better compress HEP
data?

2. How much storage space can we save by applying
these techniques?

3. Can this be implemented in a cost effective and
scalable way for HEP experiments?

15 / 43



Key Questions

1. What techniques can we use to better compress HEP
data?

2. How much storage space can we save by applying
these techniques?

3. Can this be implemented in a cost effective and
scalable way for HEP experiments?

15 / 43



Approach

16 / 43



How Do We Reduce Data Storage Needs?

1. Aggregate Data and Use Modern Algorithms

2. Exploit Patterns and Repetition

17 / 43



How Do We Reduce Data Storage Needs?

1. Aggregate Data and Use Modern Algorithms

2. Exploit Patterns and Repetition

17 / 43



Insight 1: Aggregate Data

Earlier algorithms like zlib have window sizes between 256
bytes and 32 KB

Modern algorithms like zstd have window sizes between 256 KB
and 2GB+

However, ROOT basket sizes are usually between 8 KB and 8
MB to enable fast data access.

Key Insight
Larger windows only provide an advantage if data is stored in large
enough blocks.

18 / 43



Insight 1: Aggregate Data

Earlier algorithms like zlib have window sizes between 256
bytes and 32 KB

Modern algorithms like zstd have window sizes between 256 KB
and 2GB+

However, ROOT basket sizes are usually between 8 KB and 8
MB to enable fast data access.

Key Insight
Larger windows only provide an advantage if data is stored in large
enough blocks.

18 / 43



Insight 1: Aggregate Data

Earlier algorithms like zlib have window sizes between 256
bytes and 32 KB

Modern algorithms like zstd have window sizes between 256 KB
and 2GB+

However, ROOT basket sizes are usually between 8 KB and 8
MB to enable fast data access.

Key Insight
Larger windows only provide an advantage if data is stored in large
enough blocks.

18 / 43



Insight 1: Aggregate Data

Earlier algorithms like zlib have window sizes between 256
bytes and 32 KB

Modern algorithms like zstd have window sizes between 256 KB
and 2GB+

However, ROOT basket sizes are usually between 8 KB and 8
MB to enable fast data access.

Key Insight
Larger windows only provide an advantage if data is stored in large
enough blocks.

18 / 43



Insight 2: Exploit Patterns and Repetition

If we know the type or distribution of a dataset, we can use that
information to aid in compression or to pre-train an algorithm.

These techniques may not provide data reduction on their own.

Delta Encoding
Take the difference between successive elements:

Original Datastream: [1,2,3,4,5,7,9,8,. . .]
δ-encoded Datastream: [1,1,1,1,1,2,2,-1,. . .]

19 / 43



Insight 2: Exploit Patterns and Repetition

If we know the type or distribution of a dataset, we can use that
information to aid in compression or to pre-train an algorithm.

These techniques may not provide data reduction on their own.

Delta Encoding
Take the difference between successive elements:

Original Datastream: [1,2,3,4,5,7,9,8,. . .]
δ-encoded Datastream: [1,1,1,1,1,2,2,-1,. . .]

19 / 43



Insight 2: Exploit Patterns and Repetition

Sign and exponent portions are more likely to be similar across
values.

Single precision floating point values can be “split”.

Key Insight
By aligning the same components across values, we increase the
similarity within blocks.

20 / 43



Insight 2: Exploit Patterns and Repetition

Sign and exponent portions are more likely to be similar across
values.

Single precision floating point values can be “split”.

Key Insight
By aligning the same components across values, we increase the
similarity within blocks.

20 / 43



Insight 2: Exploit Patterns and Repetition

Sign and exponent portions are more likely to be similar across
values.

Single precision floating point values can be “split”.

Key Insight
By aligning the same components across values, we increase the
similarity within blocks.

20 / 43



Improving CR (Specified)

Approach
We utilize modern compression algorithms, domain-specific
techniques, and aggregated storage to reduce storage requirements
for archived high energy physics data.

1. Move from zlib to zstd

2. Delta encoding and float splitting

3. Compress on branch level granularity

4. Pretrain compression dictionaries

21 / 43



Improving CR (Specified)

Approach
We utilize modern compression algorithms, domain-specific
techniques, and aggregated storage to reduce storage requirements
for archived high energy physics data.

1. Move from zlib to zstd

2. Delta encoding and float splitting

3. Compress on branch level granularity

4. Pretrain compression dictionaries

21 / 43



Improving CR (Specified)

Approach
We utilize modern compression algorithms, domain-specific
techniques, and aggregated storage to reduce storage requirements
for archived high energy physics data.

1. Move from zlib to zstd

2. Delta encoding and float splitting

3. Compress on branch level granularity

4. Pretrain compression dictionaries

21 / 43



Improving CR (Specified)

Approach
We utilize modern compression algorithms, domain-specific
techniques, and aggregated storage to reduce storage requirements
for archived high energy physics data.

1. Move from zlib to zstd

2. Delta encoding and float splitting

3. Compress on branch level granularity

4. Pretrain compression dictionaries

21 / 43



Improving CR (Specified)

Approach
We utilize modern compression algorithms, domain-specific
techniques, and aggregated storage to reduce storage requirements
for archived high energy physics data.

1. Move from zlib to zstd

2. Delta encoding and float splitting

3. Compress on branch level granularity

4. Pretrain compression dictionaries

21 / 43



Evaluation

22 / 43



CMS+ATLAS Experiments/Methodology

Largest HEP data release in
history (1PB)

Mix of end user data and
analysis objects

Not feasible to experiment on petabytes of data → Sampling

Extract data and then evaluate compression

Compression Ratio (CR): Uncompressed Size
Compressed Size , reflects how

compressed data is from the original.

23 / 43



CMS+ATLAS Experiments/Methodology

Largest HEP data release in
history (1PB)

Mix of end user data and
analysis objects

Not feasible to experiment on petabytes of data → Sampling

Extract data and then evaluate compression

Compression Ratio (CR): Uncompressed Size
Compressed Size , reflects how

compressed data is from the original.

23 / 43



CMS+ATLAS Experiments/Methodology

Largest HEP data release in
history (1PB)

Mix of end user data and
analysis objects

Not feasible to experiment on petabytes of data → Sampling

Extract data and then evaluate compression

Compression Ratio (CR): Uncompressed Size
Compressed Size , reflects how

compressed data is from the original.

23 / 43



CMS+ATLAS Experiments/Methodology

Largest HEP data release in
history (1PB)

Mix of end user data and
analysis objects

Not feasible to experiment on petabytes of data → Sampling

Extract data and then evaluate compression

Compression Ratio (CR): Uncompressed Size
Compressed Size , reflects how

compressed data is from the original.

23 / 43



Better Compression Algorithms

Compression level is a proxy
for resource utilization
(higher = more resources)

zstd delivers > 5% better
compression ratio than zlib

zlib, level=5 significantly
outperforms ROOT
compression.

Why?

24 / 43



Better Compression Algorithms

Compression level is a proxy
for resource utilization
(higher = more resources)

zstd delivers > 5% better
compression ratio than zlib

zlib, level=5 significantly
outperforms ROOT
compression.

Why?

24 / 43



Better Compression Algorithms

Compression level is a proxy
for resource utilization
(higher = more resources)

zstd delivers > 5% better
compression ratio than zlib

zlib, level=5 significantly
outperforms ROOT
compression. Why?

24 / 43



Exploit Data Layout

Window size is the amount of
data the algorithm can view

ROOT basket sizes can range
from 210 to 222 bytes, but
branches are between 212 and 230

bytes

zstd windows can be up to 231

bytes

Conclusion
Compressing at the granularity of branches enables better CR (full
windows).

25 / 43



Exploit Data Layout

Window size is the amount of
data the algorithm can view

ROOT basket sizes can range
from 210 to 222 bytes, but
branches are between 212 and 230

bytes

zstd windows can be up to 231

bytes

Conclusion
Compressing at the granularity of branches enables better CR (full
windows).

25 / 43



Exploit Data Layout

Window size is the amount of
data the algorithm can view

ROOT basket sizes can range
from 210 to 222 bytes, but
branches are between 212 and 230

bytes

zstd windows can be up to 231

bytes

Conclusion
Compressing at the granularity of branches enables better CR (full
windows).

25 / 43



Delta Encoding and Float Splitting

Integer data Floating point data

Conclusion
Delta compression, used selectively, improves integer CR by 5%.
Floating point splitting, used selectively, improves float CR by 4%.

26 / 43



Delta Encoding and Float Splitting

Integer data Floating point data

Conclusion
Delta compression, used selectively, improves integer CR by 5%.
Floating point splitting, used selectively, improves float CR by 4%.

26 / 43



General Takeaway

CMS Data ATLAS Data

Conclusion
We reduce data storage usage by up to 10% with zstd, level=9 and
15% with zstd, level=22.

27 / 43



General Takeaway

CMS Data ATLAS Data

Conclusion
We reduce data storage usage by up to 10% with zstd, level=9 and
15% with zstd, level=22.

27 / 43



Compression at Production Scale

28 / 43



Insight: Decompression >> Compression

Common data use case is Filtering → Selection → Visualization

HEP data access is mainly > 95% reads.

Data can be compressed offline, but must be decompressed
immediately when needed for analysis.

Key Insight
As long as decompression is done quickly, slower compression is not a
barrier to analysis performance.

29 / 43



Insight: Decompression >> Compression

Common data use case is Filtering → Selection → Visualization

HEP data access is mainly > 95% reads.

Data can be compressed offline, but must be decompressed
immediately when needed for analysis.

Key Insight
As long as decompression is done quickly, slower compression is not a
barrier to analysis performance.

29 / 43



Intuition and Context

Data storage needs expected to grow rapidly

Use better algorithms, compression techniques, and aggregation
to get better compression ratio

To enable good analysis performance, data reads must be fast

Scaling Up to Production
Design compression strategies to reduce data storage requirements,
while delivering good read performance.

30 / 43



Intuition and Context

Data storage needs expected to grow rapidly

Use better algorithms, compression techniques, and aggregation
to get better compression ratio

To enable good analysis performance, data reads must be fast

Scaling Up to Production
Design compression strategies to reduce data storage requirements,
while delivering good read performance.

30 / 43



Intuition and Context

Data storage needs expected to grow rapidly

Use better algorithms, compression techniques, and aggregation
to get better compression ratio

To enable good analysis performance, data reads must be fast

Scaling Up to Production
Design compression strategies to reduce data storage requirements,
while delivering good read performance.

30 / 43



Intuition and Context

Data storage needs expected to grow rapidly

Use better algorithms, compression techniques, and aggregation
to get better compression ratio

To enable good analysis performance, data reads must be fast

Scaling Up to Production
Design compression strategies to reduce data storage requirements,
while delivering good read performance.

30 / 43



Metrics

Compression Throughput: Uncompressed Size
Time to Compress , shows single core

throughput.

Core-Hour: The amount of work done in one hour by a single
core on the evaluation system (2.8 GHz Intel Xeon).

31 / 43



Compression and Decompression Throughput

Each dot represents a different configuration for each algorithm.

Conclusion
Decompression performance is constant regardless of compression
settings.

32 / 43



Compression and Decompression Throughput

Each dot represents a different configuration for each algorithm.

Conclusion
Decompression performance is constant regardless of compression
settings.

32 / 43



2 Selected Strategies

ROOT Configuration
Changes

Switch compression
algorithms to zstd, level=9

Add delta encoding and float
splitting to ROOT library

Minimal computational
overhead

Extracted Branch-Level
Storage

Compress and store in
aggregate blocks

Use zstd, level=22 and other
techniques

Need additional cores to
handle reads and writes

33 / 43



2 Selected Strategies

ROOT Configuration
Changes

Switch compression
algorithms to zstd, level=9

Add delta encoding and float
splitting to ROOT library

Minimal computational
overhead

Extracted Branch-Level
Storage

Compress and store in
aggregate blocks

Use zstd, level=22 and other
techniques

Need additional cores to
handle reads and writes

33 / 43



2 Selected Strategies

ROOT Configuration
Changes

Switch compression
algorithms to zstd, level=9

Add delta encoding and float
splitting to ROOT library

Minimal computational
overhead

Extracted Branch-Level
Storage

Compress and store in
aggregate blocks

Use zstd, level=22 and other
techniques

Need additional cores to
handle reads and writes

33 / 43



Saving Storage Space (2019)

Save up to 12 PB (15%)

2.5M core-hours < 1% of
ATLAS 2019 usage

Exchange storage size for
computation

Many future areas for
exploration

34 / 43



Saving Storage Space (2019)

Save up to 12 PB (15%)

2.5M core-hours < 1% of
ATLAS 2019 usage

Exchange storage size for
computation

Many future areas for
exploration

34 / 43



Saving Storage Space (2019)

Save up to 12 PB (15%)

2.5M core-hours < 1% of
ATLAS 2019 usage

Exchange storage size for
computation

Many future areas for
exploration

34 / 43



Saving Storage Space (Projected)

Total savings of more than 250 PB of data in 2034

Even with CPU costs, still represents savings of millions of dollars

Better savings if analysis designed to work outside of ROOT

35 / 43



Saving Storage Space (Projected)

Total savings of more than 250 PB of data in 2034

Even with CPU costs, still represents savings of millions of dollars

Better savings if analysis designed to work outside of ROOT

35 / 43



Saving Storage Space (Projected)

Total savings of more than 250 PB of data in 2034

Even with CPU costs, still represents savings of millions of dollars

Better savings if analysis designed to work outside of ROOT
35 / 43



Related Work

36 / 43



Related Work

ROOT framework
Configuration selection for workload (Shadura 2019, ATLAS
2020)
Speed up R/W times by > 2x, but limited to working within
ROOT; views compression as black-box

Lossy approaches and filtering
Lossy floating point and autoencoder compression (Mete 2020,
Heinrich 2019)
Necessarily loses information, so requires scientific buy-in; can
be combined with our approach

Domain specific compression (Non-HEP)
Learned compression for objects (Chen 2017, Sanchez 2019)
Can be integrated into our approach to create specific
compression techniques for any object

37 / 43



Related Work

ROOT framework
Configuration selection for workload (Shadura 2019, ATLAS
2020)
Speed up R/W times by > 2x, but limited to working within
ROOT; views compression as black-box

Lossy approaches and filtering
Lossy floating point and autoencoder compression (Mete 2020,
Heinrich 2019)
Necessarily loses information, so requires scientific buy-in; can
be combined with our approach

Domain specific compression (Non-HEP)
Learned compression for objects (Chen 2017, Sanchez 2019)
Can be integrated into our approach to create specific
compression techniques for any object

37 / 43



Related Work

ROOT framework
Configuration selection for workload (Shadura 2019, ATLAS
2020)
Speed up R/W times by > 2x, but limited to working within
ROOT; views compression as black-box

Lossy approaches and filtering
Lossy floating point and autoencoder compression (Mete 2020,
Heinrich 2019)
Necessarily loses information, so requires scientific buy-in; can
be combined with our approach

Domain specific compression (Non-HEP)
Learned compression for objects (Chen 2017, Sanchez 2019)
Can be integrated into our approach to create specific
compression techniques for any object

37 / 43



Related Work

ROOT framework
Configuration selection for workload (Shadura 2019, ATLAS
2020)
Speed up R/W times by > 2x, but limited to working within
ROOT; views compression as black-box

Lossy approaches and filtering
Lossy floating point and autoencoder compression (Mete 2020,
Heinrich 2019)
Necessarily loses information, so requires scientific buy-in; can
be combined with our approach

Domain specific compression (Non-HEP)
Learned compression for objects (Chen 2017, Sanchez 2019)
Can be integrated into our approach to create specific
compression techniques for any object

37 / 43



Related Work

ROOT framework
Configuration selection for workload (Shadura 2019, ATLAS
2020)
Speed up R/W times by > 2x, but limited to working within
ROOT; views compression as black-box

Lossy approaches and filtering
Lossy floating point and autoencoder compression (Mete 2020,
Heinrich 2019)
Necessarily loses information, so requires scientific buy-in; can
be combined with our approach

Domain specific compression (Non-HEP)
Learned compression for objects (Chen 2017, Sanchez 2019)
Can be integrated into our approach to create specific
compression techniques for any object

37 / 43



Summary and Future Work

38 / 43



Summary of Contributions

1. Evaluated performance of compression algorithms and strategies
on HEP data

2. Designed strategies to improve compression ratio for data
storage

3. Achieved data storage reduction of 15% on ATLAS DAOD
(82 GB →70 GB)

4. Modeled scale-up for ATLAS (Save >250 PB by 2035)

39 / 43



Summary of Contributions

1. Evaluated performance of compression algorithms and strategies
on HEP data

2. Designed strategies to improve compression ratio for data
storage

3. Achieved data storage reduction of 15% on ATLAS DAOD
(82 GB →70 GB)

4. Modeled scale-up for ATLAS (Save >250 PB by 2035)

39 / 43



Summary of Contributions

1. Evaluated performance of compression algorithms and strategies
on HEP data

2. Designed strategies to improve compression ratio for data
storage

3. Achieved data storage reduction of 15% on ATLAS DAOD
(82 GB →70 GB)

4. Modeled scale-up for ATLAS (Save >250 PB by 2035)

39 / 43



Summary of Contributions

1. Evaluated performance of compression algorithms and strategies
on HEP data

2. Designed strategies to improve compression ratio for data
storage

3. Achieved data storage reduction of 15% on ATLAS DAOD
(82 GB →70 GB)

4. Modeled scale-up for ATLAS (Save >250 PB by 2035)

39 / 43



Summary of Contributions

1. Evaluated performance of compression algorithms and strategies
on HEP data

2. Designed strategies to improve compression ratio for data
storage

3. Achieved data storage reduction of 15% on ATLAS DAOD
(82 GB →70 GB)

4. Modeled scale-up for ATLAS (Save >250 PB by 2035)

39 / 43



Future Work

1. Can strategies like float splitting be generated automatically for
any datatype/distribution?

2. Could data access patterns inform compression strategy choices?

3. Can storage acceleration be used to offload computational cost
to accelerators?

40 / 43



Acknowledgements

Prof. Andrew A. Chien

Chen Zou

Ilija Vukotic

Prof. Rob Gardner

Large-Scale Systems Group

MANIAC Lab

41 / 43



Questions?

42 / 43



Backup Slides

43 / 43



Pretraining Dictionaries

Train 1 dictionary per
datatype with zstd

Dictionary training does
not universally improve
compression ratio

However, we realize a 1%
improvement in CR when
pretraining on small
branches (< 8KB)

43 / 43



Pretraining Dictionaries

Train 1 dictionary per
datatype with zstd

Dictionary training does
not universally improve
compression ratio

However, we realize a 1%
improvement in CR when
pretraining on small
branches (< 8KB)

43 / 43



Aggregate Strategies (Across Files)

Key Insight
Aggregating across files can improve compression ratio by up to 2%.

43 / 43



Other Techniques Can Improve Throughput

Pretraining improves
compression throughput by 3x

Delta encoding and other
passes run at > 300 MB/s

Creating large baskets is not
expensive (100 MB/s)

43 / 43



Other Techniques Can Improve Throughput

Pretraining improves
compression throughput by 3x

Delta encoding and other
passes run at > 300 MB/s

Creating large baskets is not
expensive (100 MB/s)

43 / 43



Other Techniques Can Improve Throughput

Pretraining improves
compression throughput by 3x

Delta encoding and other
passes run at > 300 MB/s

Creating large baskets is not
expensive (100 MB/s)

43 / 43



Decompression Throughput for Zstd Variations

Key Insight
zstd with aggregation and dictionary do not have a significant effect
on decompression throughput, all still >575 MB/s.

43 / 43


	Context
	Data Compression
	HEP Data Storage
	Approach
	Evaluation
	Compression at Production Scale
	Related Work
	Summary and Future Work
	Appendix
	Backup Slides


