Improving Movie Recommendations with
Domain-Specific Insights

Rohan Kumar Arjun Rawal
Department of Computer Science Department of Computer Science
University of Chicago University of Chicago
Chicago, IL 60637 Chicago, IL 60637
rohankumar@cs.uchicago.edu arjunrawal4@cs.uchicago.edu
Abstract

The prediction of user preference is an essential component of modern systems, as
better predictions lead to increased customer satisfaction and revenue. However,
these predictions are often inaccurate, require large quantities of training data, and
have to be run on high performance computers to achieve satisfactory results. In
this study, we propose a hybrid prediction approach, where we combine domain-
specific information with standard recommendation techniques to achieve more
accurate predictions. We propose simple modifications to LMaFit based matrix
completion techniques which incorporate genre information, and find that these do
not provide any significant improvements. We also propose a modified collaborative
filtering technique using a hybrid similarity metric that accounts for users liking
the same movie-genres. On MovieLens 1M, our proposed collaborative filtering
technique achieves up to 50% smaller prediction error with highly sparse ratings
compared to standard collaborative filtering. This result demonstrates that applying
relevant domain-specific information to recommendation problems can provide
more accurate results, with a minimal effect on training time.

1 Background and Related Work

Movie recommendations provide a perfect test scenario for creating accurate recommendations based
on user history. Movie rating data is fairly sparse, as people watch different sets of movies, and have
a variety of criteria that they use to evaluate the movies. We first describe the state of the art in matrix
completion and collaborative filtering, and then introduce our approach, which combines the domain
specific genre information to increase prediction accuracy.

We use work done by Tran et al.|[2018]] as an inspiration for our approach, as they use the existence of
movies that are co-liked and co-disliked to recommend movies to a user who has seen and liked one
of a pair. However, this approach requires a large set of training data, as it fails to provide satisfactory
predictions when there are very few overlaps between users. Another approach by Wu et al.| [2018]]
takes into account that some users’ recommendations are less reliable than others for predicting future
ratings. They analyze the deviation of each user from an average rating, and use that centrality data
to create a better matrix factorization. This approach is more accurate than many other methods, but
requires many iterations to achieve a proper gradient descent result, and therefore cannot be used in
more computation limited circumstances.

Several variations of collaborative filtering have proven successful for recommendation systems.
From a survey by [Su and Khoshgoftaar| [2009]], the canonical approaches are model-based and
memory-based collaborative filtering, as well as hybrid approaches which build on these. Perhaps the
most significant drawback of model-based collaborative filtering is its inability to take advantage of
item-similarity (e.g., 2 different comedy movies). Thus, a common strategy to improve the model-

Preprint. Under review.

based approach is to create hybrid approaches which incorporate this additional information about
the items being recommended.

Furthermore, collaborative filtering performs worse when the ratings matrices in concern are more
sparse (i.e., when there are fewer ratings to train on). [Kohrs and Merialdo|[[1999] present a hierarchical
clustering approach which improves on the robustness of collaborative filtering in this case. Towards
a similar goal, |Gong|[2010] presents user-based and item-based clustering strategies which are both
improvements over naive the collaborative filtering approach. Inspired by this goal, in this work,
we incorporate information about our items (in particular, genres) to improve predictions for sparse
ratings.

2 Problem Statement

We explore modifications to the naive collaborative filtering approach within the context of providing
movie recommendations. We compare and contrast standard techniques like memory-based collabora-
tive filtering and low-rank matrix completion. Furthermore, we improve on these canonical techniques
by using hybrid methods and taking into account additional context about the movie-recommendation
problem, such as categorizing movies into genres, and finding a user’s top genres.

3 Approach

3.1 Dataset

We train and evaluate our recommendations on the MovieLens 1M dataset[] This dataset from
Harper and Konstan|[2016] consists of a matrix of (u, m) ratings, for 6040 MovieLens users on a
set of 3883 movies. Each rating is an integer between 1 and 5, and the movie descriptions include a
genre classification from IMDB which can fall into 17 different categories (movies can have multiple
genres). Other user metadata and movie features are provided, but not used in this experiment. The
sparsity of the ratings matrix is 4.26%.

Notation: For the remainder of this paper, R will denote the true ratings matrix and R’ will denote the
ratings matrix we train on (more details in Section 4.1). R, denotes user u’s rating for movie m.

3.2 Collaborative Filtering

Simple Similarity Metrics: This is the standard model-based collaborative filtering. For n users,
we first compute an n x n similarity matrix S, where .S;; represents the similarity between users ¢
and j. Then, in order to compute user u’s predicted rating for movie m, we compute:

1
rsim(uvm) - <= <o Suv : R;m
Z’UEU ‘SUU| 7;

We experimented with several similarity metrics, including cosine, correlation, hamming, and
euclidean. We present results in a later section for cosine and hamming-distance based metrics, since
they both perform well but in different ways.

Genre-Only Prediction: This is purely content-based collaborative filtering. We look at a user’s
top-k genres and see how much they overlap with a movie’s genres. More precisely:
Tgen(U, M) = Tqpg + A - IOU(’s top-k genres, m’s genres)

Here, 14,4 is the average rating in R’, and IOU means “intersection-over-union”. \ and k are
hyper-parameters which can be chosen with care.

Simple Similarity with Genre Bias: In this hybrid approach, we simply add a bias term if a
user’s top-k genres overlap with the movie’s genres, and subtract a bias term otherwise. k and b are
hyper-parameters.

s) = rsim (U, m) + b if genre_overlap, (u, m) # @
Tgen—bias\W M) = (u,m) — b if genre_overlap,,(u,m) = @

"https://grouplens.org/datasets/movielens/

https://grouplens.org/datasets/movielens/

Simple Similarity with Genre Similarity: Here, we incorporate the genre-similarity of users,
as well as their standard movie-similarity. The intent is to capture the fact that a comedy-liker is
well-predicted by other comedy-likers, even if she has not watched the same comedy movies as them.

Guy = Sup + X - [{u’s top-k genres} N {v’s top-k genres}|

! Z Guv ' R;m

Tgen—sim ('I.L, m) =
> veu [Guol
veU

A and k are hyper-parameters.

3.3 Matrix Completion

Averaged Ratings Approach: We first consider the naive approach: we take the average of the
nonzero ratings for a movie m,yg, and then compare the user’s average rating uaye, with the overall
average rating Uy, and predict the rating for (u, m) will be the average rating for a movie scaled by
a users individual rating average. Effectively, we find the average rating of a movie, and then bias
that rating by the user’s personal rating average, as some people rate movies higher than others on
average.

Uav g

Uavg

ravgfcomp(u7 m) = Mayg *

LMaFit: We utilize the LMaFit algorithm, developed by Wen et al.| [2012]]. This algorithm takes
in a set of existing indices F and corresponding values, as well as a predicted rank, and then uses a
minimization algorithm to solve for the remaining values. This corresponds to solving the problem

FindU € Rmxn(k) S.t. Uij ~ Aija (Z,j) ekl

ISVT: We also consider the Iterative Singular Value Thresholding Algorithm developed by |Cai
et al.|[2010]. This approach, iteratively produces a completed matrix X by removing small singular
values below a certain threshold in a Singular Value Decomposition, and then uses the truncated
singular values to create a new matrix. This process is repeated until the change in the matrix X is
below a value €.

LMaFit with Genre Bias: We consider varying the predicted rank for LMaFit, and then also
consider biasing results based on genre preferences. After computing the LMaFit matrix completion,
we iterate through our testing data, and bias our results up or down if the set of genres for a movie
intersect the set of top k genres for a user is nonempty. We compute the set of top k genres for a
user by keeping track of the genres for all movies they rank higher than their average rating over all
movies. We use the set intersection of genre sets with the intuition that if a movie falls into a user’s
top k genres, they are more likely to enjoy watching it. We explored options of weighting the user
genre preferences and more complex similarity functions, but found little to no benefit.

Tima(u,m) + b if genre_overlap, (u, m) # @

Tima—bias (U, 1) = { Tima(u,m) — b if genre_overlap,, (u,m) = @

4 Evaluation

4.1 Methodology

In order to test each of our approaches, we used hold-out sets as follows. Let €2 be the set of indices
we have ratings for, i.e., Q@ = {(u,m) : Ry, is valid}. For a testing fraction p € [0, 1], we choose
a uniformly random subset of {2 of size p - |2] — this is our test subset, I". We initialize a training
matrix R’ and for all (u,m) € Q\ I, we set R,,,,, = Rum. In words, we omit the values we are
going to test on.

We then run the approach we are testing on the (training) ratings matrix R’ to learn and fill in
the missing ratings. To measure performance, we compute the Root-Mean-Squared-Error over all

predictions in our test set, I, i.e.,

1
error =] Z IR}y — Ruml[3
(u,m)er

All of our code can be found on GitHubE] We use a Python3 version of LMaFit which can be found
on GitHubf]

4.2 Collaborative filtering

4.2.1 Naive Strategies

We evaluate the naive model-based collaborative filtering strategy with two different but well-
performing similarity metrics — cosine similarity and hamming-distance similarity. These results
are shown in Figure [I] Both strategies give an RMSE of slightly less than 1, which means the
predicted ratings are, on average, 1 away from the true ratings. Hamming-similarity seems to perform
much better than cosine-similarity in the case of more sparse matrices (i.e., when we train on < 5%
of available ratings). These values are commensurate to results seen in the collaborative filtering
literature.

4.2.2 Using Genre Information

The Genre-Only Prediction does not perform well, giving RMSE > 1.15, even with optimized hyper-
parameters, implying the need for hybrid strategies which account for both model-based similarity
(as above) and movie-specific information (genres). For both the Genre-Bias and Genre-Similarity
approaches, we found that £ = 3 gives us the best results; thus, all results shown use & = 3. The
Genre-Bias approach does not yield improvements over the standard approach, and in fact, seems to
increase the error rate with larger bias values (Figures[2]and[3). This hints that adding or subtracting
a constant bias term is too naive.

On the other hand, the Genre-Similarity approach provides improvements over the standard approach
in the case of sparse matrices, especially in the case of cosine similarity (Figures] and [5). When
training on 1% of the available ratings, the naive approach gets an RMSE of 2.6 whereas the Genre-
Similarity approach gets between 1.3 and 1.4, depending on the scaling factor used. This result
further verifies that collaborative filtering does not perform well with a small number of training
samples. In these cases, using information about different users liking the same genres (even if not
the same movies) improves errors rates by up to 50%.

4.3 Matrix completion
4.3.1 Methods

We evaluate the effectiveness of the various matrix completion approaches using the standard
methodology mentioned above. In Figure[6 we show the effectiveness of the ISVT, Avg, and, LMaFit
approaches. We see that LMaFit and Avg both perform similarly, with Avg actually outperforming
the LMaFit approach at very high sparsity (1% training set). ISVT does very poorly, by inspection, it
appears that the values it fills are too close together to be accurate ratings.

4.3.2 LMaFit Ranks

We explore the effect of predicted rank for LMaFit and see that the lower ranks generally perform
better, with rank=1 or rank=2 being the best in all cases. We use rank=2 for the other experiments, as
it is commonly seen in literature (Yu et al.|[2016]]) and performs very similarly to the optimal based
on our experiments. We present the rank comparisons in Figure

Zhttps://github.com/rohankumar42/movie_recommendations
*https://github.com/mcrovella/mining-low-dim-network-data/blob/master/lmafit.py

https://github.com/rohankumar42/movie_recommendations
https://github.com/mcrovella/mining-low-dim-network-data/blob/master/lmafit.py

4.3.3 Genre Bias

We evaluate the benefit of adding genre bias to the LMaFit based predictions, and find, surprisingly,
that they do not improve prediction accuracy. We use a standard set intersection to determine an
overlap between movie and user genre preferences, and only look at the user’s top 3 movies. This
parameter was fixed after exploring values in the range [1,8]. We add the bias value to our predictions
if the movie and user genre’s overlap, and subtract the bias value otherwise. We plot the effect of
various levels in Figure[8] In our experiments, we also considered the effect and benefit of normalizing
the ratings before and after the addition of bias, and found no benefit. Additionally, we considered
other approaches to including bias, such as only using positive bias, or using multiplicative bias
instead of a constant offset. However, in all of these cases, we found that the predictions did not
improve significantly.

As evident from Figure[§] we see that the benefit of adding bias decreases both as the bias increases,
and as p increases. By inspection, we see that when LMaPFit is run with very little data, LMaFit
completes the matrix with very small values, and so predictions are very inaccurate. Consequently,
the bias values do little to fix the inaccuracies in the predictions. In all cases, we find the the LMaFit
predictions seem to off by similar amounts on both movies in the user’s genre preference and on
movies not in the user’s preferences. One explanation for this is the fact that users are unlikely to
watch many movies not in their preference set, so such adjustments are not very beneficial to overall
error reduction. Furthermore, because LMaFit, unlike collaborative filtering, does not focus on user
similarity, perhaps some of the underlying genre structure is already present in the completed matrix,
and increasing the bias just creates inaccuracies.

5 Conclusion

In this work, we implement and evaluate several standard approaches to both collaborative filtering
and matrix completion, with the goal of producing accurate movie recommendations. However, we
notice that these approaches lack insight about the nature of the data, specifically genre preference.
We incorporate the genre information about both movies and users into our collaborative filtering
and matrix completion predictions with varying success. Although the genre bias does not seem to
provide a benefit on matrix completion, it improves collaborative filtering predictions on sparse data
by up to 50%. These results demonstrate that in certain cases, using domain specific information to
create a hybrid approach can vastly outperform traditional collaborative filtering approaches.

Acknowledgments

We thank Tapan Srivastava and Andrew Wells for their helpful insight and moral support in the
research process.

—eo— C.F. with Cosine
-+ C.F. with Hamming

RMSE

144

124

104

02 03 04 05 06 07

p (Proportion of data used to test)

Figure 1: Naive collaborative filtering with cosine and hamming similarity.

RMSE

RMSE

148

16

14

12

10

+— CF.
—— CF
—— CF.
= CF.

C.F.

with Cosine (b=0.0)

. with Cosine (b=0.1)

with Cosine (b=0.2)
with Cosine (b=0.5)
with Cosine (b=1.0)

¥ ¥

0.z

03 04 05 06 07

p (Proportion of data used to test)

Figure 2: Collaborative filtering (cosine) with genre-bias.

15

14

13

12

11

10

+— CF.
—— CF.
- CF
= C.F.

C.F.

with Hamming (b=0.0}
with Hamming (b=0.1}

. with Hamming (b=0.2)

with Hamming (b=0.5)
with Hamming (b=1.0}

-

0z

05 06 07
p (Proportion of data used to test)

03

Figure 3: Collaborative filtering (hamming) with genre-bias.

26 4
»— C.F. with Cosine {lambda=0.0} »
—e— C.F. with Cosine (lambda=0.1) [
241 —s— CF. with Cosine (lambda=0.2) |
-+— C.F. with Cosine {lambda=0.5) |
33| ~= CF. with Cosine (lambda=1.0) [
204
i 18 4
=
e
16 A
14 4
12
10 1 L w ' -

02 03 04 05 06 07 08 09 10
p (Proportion of data used to test)

Figure 4: Collaborative filtering (cosine) with additional genre-similarity.

125 R -
-+ C.F. with Hamming (lambda=0.0)

—e— C.F. with Hamming {lambda=0.1}
—e— C.F. with Hamming {lambda=0.2)
120 { —=— C.F. with Hamming {lambda=0.5)
C.F. with Hamming (lambda=1.0)

115 |
w
w
=110
105 1
100
= ®
02 03 0.4 05 06 07 08 09 10

p (Proportio n of data used to test)

Figure 5: Collaborative filtering (hamming) with additional genre-similarity.

—a— |SVT
275 1|~ +Avg
—e— LMaFit (k=2)

250 4

2325

200 A

RMSE

175 4

150

125

100 A

02 03 04 05 06 07 08 09 10
P (Proportion of data used to test)

Figure 6: Comparison of matrix completion methods.

+— LMaFit (k=1)
275 —e— LMaFit (k=2)
—e— |MaFit (k=3)
250 { —e— LMaFit (k=4)
—e— LMaFit (k=8)
LMaFit (k=16)
225 1 —a— |MaFit (k=32)
LMaFit (k=64}
2004~* LMaFit (k=128)
w
L
=
175 4
150
125 «—
100 { s
=

D.I2 D.I3 D.I4 D.IS D.IG D.I? D.IS D.IQ 1.‘0
P (Proportion of data used to test)

Figure 7: Comparison of LMaFit accuracy with varying rank.

229 —»— LMaFit (b=0.0)
—e— LMaFit (b=0.1)
—a— |MaFit (b=0.2)
204 —=— LMaFit (b=0.5)
—e— |MaFit (b=1.0)
18 4
W 16
=
e
144
124
104

02 03 04 05 06 07 08 09 10
p (Proportion of data used to test)

Figure 8: Comparison of LMaFit with genre bias.

References

J.-F. Cai, E. J. Candes, and Z. Shen. A singular value thresholding algorithm for matrix completion.
SIAM Journal on optimization, 20(4):1956-1982, 2010.

S. Gong. A collaborative filtering recommendation algorithm based on user clustering and item
clustering. JSW, 5(7):745-752, 2010.

F. M. Harper and J. A. Konstan. The movielens datasets: History and context. Acm transactions on
interactive intelligent systems (tiis), 5(4):19, 2016.

A. Kohrs and B. Merialdo. Clustering for collaborative filtering applications. Intelligent Image
Processing, Data Analysis & Information Retrieval, 3:199, 1999.

X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Advances in artificial
intelligence, 2009, 2009.

T. Tran, K. Lee, Y. Liao, and D. Lee. Regularizing matrix factorization with user and item embeddings
for recommendation. In Proceedings of the 27th ACM International Conference on Information
and Knowledge Management, pages 687-696. ACM, 2018.

Z. Wen, W. Yin, and Y. Zhang. Solving a low-rank factorization model for matrix completion
by a nonlinear successive over-relaxation algorithm. Mathematical Programming Computation,
4(4):333-361, Dec 2012. ISSN 1867-2957. doi: 10.1007/s12532-012-0044-1. URL https:
//doi.org/10.1007/s12632-012-0044-1,

Z. Wu, H. Tian, X. Zhu, and S. Wang. Optimization matrix factorization recommendation algorithm
based on rating centrality. CoRR, abs/1806.07678, 2018. URL http://arxiv.org/abs/1806,
07678.

X. Yu, W. Bian, and D. Tao. Scalable completion of nonnegative matrices with the separable structure.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAT’ 16, pages 2279—
2285. AAAI Press, 2016. URL http://dl.acm.org/citation.cfm?id=3016100.3016217,

https://doi.org/10.1007/s12532-012-0044-1
https://doi.org/10.1007/s12532-012-0044-1
http://arxiv.org/abs/1806.07678
http://arxiv.org/abs/1806.07678
http://dl.acm.org/citation.cfm?id=3016100.3016217

	Background and Related Work
	Problem Statement
	Approach
	Dataset
	Collaborative Filtering
	Matrix Completion

	Evaluation
	Methodology
	Collaborative filtering
	Naive Strategies
	Using Genre Information

	Matrix completion
	Methods
	LMaFit Ranks
	Genre Bias

	Conclusion

