
Reducing Hash-Table Memory Usage with
Variable-Sized Tables

Arjun Rawal
Department of Computer Science

University of Chicago
Chicago, USA

arjunrawal4@uchicago.edu

Abstract—Dictionary data structures are an essential part of
modern computer systems and algorithms. We propose a multi-
tiered hash table that takes advantage of value distribution in key
value stores to reduce the memory footprint of hash tables. More
specifically, we fit each inserted value into a hash table that wastes
the minimal amount of memory. Each hash table can be accessed
and resized independently, distributing the load across multiple
structures. Reducing the in-memory size of hash tables often has
the side effect of improving throughput and latency, as more
information can be stored in the cache. This method offers gains
of nearly 50% in exponential and Zipfian data distributions, and
incurs minimal latency penalties in uniform distributions. This
method is easily parallelizable, applicable to different hashing
algorithms, and requires no changes to existing insert, contains,
and remove operations.

Index Terms—Data Structure, Memory Management, Table
Lookup

I. INTRODUCTION

Dictionaries expose insert, contains, and remove operations
to users, handling resizing and collisions internally. Hash colli-
sions are particularly challenging to deal with, and a variety of
strategies have been proposed to reduce the prevalence of col-
lisions and their effect on latency and memory utilization. One
fundamental problem with most strategies utilized to deal with
hash collisions is memory usage. With the memory bandwidth
gap growing year over year, improving data representation in
memory is essential to improving performance of applications
that require fast data access.

We observe that many common uses of hash tables have data
that does not fully utilize the size of the datatype it is stored
in. For example, a basic implementation of a hit count per
website will require the allocation and storage of a datatype
capable of storing the largest possible hit count per website
over a year (64 bits). This memory is vastly underutilized, as
a large percentage sites have hit counts that could be stored
in 16 bits, and nearly every site’s hit count could be stored
in 32 bits. Mitigating this challenge is tricky, as allocation
on demand using memory reference, and non-word aligned
memory pose latency and caching difficulties, respectively. We
propose disaggregating the hash table, replacing a hash table
with k bits of value storage with p disjoint table, where p is
on the order of log(k). Our main contributions are:

• the implementation of a hash table that reduces memory
usage on values that vary in size

• an application to real-world data to reduce memory usage
and data movement by up to 50%

II. IMPLEMENTATION

A. Base Hash Table

We implement a standard single-threaded hash table using
the cuckoo hash protocol [1] as a comparison . We expose the
insert, contains, and remove, operations, as well as an incre-
ment for use in counting applications. For our hash functions,
we use xxHash, a throughput oriented non-cryptographic hash
capable of >10GB/s throughput on 64 bit inputs [2]. We use
two tables indexed by XXH64 functions seeded with different
random values. We index using bit shifting instead of modulo
to reduce the CPU cycle cost of indexing. Our implementation
does naive resizing by allocating a new table and reinserting
values.

B. Adaptive Hash Table

We implement 3 tier single-threaded hash table using the
cuckoo hash protocol to demonstrate the benefit of our ap-
proach. We build on top of the base hash table, maintaining all
interfaces and structure, and changing only internal logic. We
use 16-bit, 32-bit, and 64-bit value sizes for the three disjoint
tables. This corresponds to 8, 12, and 16 byte bucket sizes, as
we store the entire 32-bit key, and a byte to track the validity of
an entry. We require that our entries be word aligned, and we
evaluate the effect of unaligned memory. This storage format
be optimized further if only 31 bits of the key are required,
reducing the byte sizes to 8, 8, and 12, respectively.

When (k, v) pairs are inserted into the table, we evaluate the
size of v, and then assign the insertion to the table that fits it
the best. Then, that table inserts the value, and has exclusive
ownership of it unless the value is changed. If the value is
incremented beyond the maximum value of its current table, it
is evicted and inserted into the next largest table. This protocol
has several nice properties that make it memory efficient and
capable of high performance.

First, each table can be accessed and resized independently,
increasing the utilization of each table, and allowing for easy
parallelization. Second, tables can be added or removed on
demand, allowing for data to be inserted without knowing the
distribution of the values or maximum value size. Finally, re-
ducing the size of the hash table in memory has compounding

mailto:arjunrawal4@uchicago.edu


effects on throughput and latency, as more data can fit into
memory, reducing the effect of cache misses and page faults.
Hence, by reducing the memory size of the hash we reduce
the memory movement.

Insert()

16-bit

32-bit

64-bit

III. EVALUATION

A. Distributions

We use three different distributions to evaluate our results.
The first distribution is uniform, representing random values
in the space (0, 264). The second distribution is exponential,
where with probability density function,

f(x, λ) =

{
λe−λx x ≥ 0,

0 x < 0.

Finally, we use a Zipfian distribution, commonly seen in
linguistic and web traffic patterns. With N the number of
elements, k the rank of the element in a sorted list by
frequency, and s the exponent which creates the distribution.

f(k, s,N) =
1/ks

N∑
n=1

(1/ns)

Zipfian distributed values are extremely inefficiently rep-
resented in standard hash tables, as the majority of the data
is clustered around a few small values. On the Zipfian and
exponential distributions, we cap the maximum value at ≈ 264.
We generate random values using Python numpy, and read
them in using I/O during evaluation. This slows down absolute
hash table performance by approximately 30%, but should
not have any effect on the relative performance of the two
table models and does not change their memory usage. We
considered reading the file into memory first, but found
that the adverse impact of increased cache usage negatively
impacted performance, and moreover, was an inaccurate model
of the computation pattern, as hash tables normally operate on
streaming input.

For each distribution, we consider only adding operations,
as they provide the most stress to our tables, and use linearly
increasing keys, as randomly shuffled keys were found to
have no effect on performance. Finally, we also consider a
real world application, evaluating word distribution. This task
is a simple procedure to compute the frequency of words
in a passage of text. We use an collection of 1.2GB of
plain-text novels from Project Gutenberg archives to evaluate

performance. The test function runs a set of hash functions to
track word usage, shown in Algorithm 1.

Algorithm 1: Word Frequency Counter
Result: (k, v) pairs where k is a word, and v is the

number of occurrences in the passage.
initialize(ht);
for w ∈ Text do

if contains(ht, w) then
increment(ht, w);

else
insert(ht, w, 1);

end
end

B. Methodology

The tables were compiled using gcc version 4.8.5 with
optimization -O3, and run on a 20-core Intel Xeon Gold
6138 CPU @ 2.00GHz with 27.5 MB L3 cache, and 512 GB
of RAM. We initialize all three tables with 1024 slots, and
grow if the cuckoo hashing policy runs more than 8 evictions.
Both of these choices can be tuned for a given use case. We
repeat 10 runs and take the median, to reduce the effect of
outliers. We run each distribution on 109 hash insertions with
Zipfian constant 1.2, exponential constant 0.5, and summarize
distribution statistics in Table I. We also vary the constants for
both the Zipfian and exponential distribution with 107 hash
insertions, and report those results.

C. Performance Results

From Figure 1 we see that the adaptive hash table reduces
memory usage of hash tables on average. On uniformly
distributed inserted values, the adaptive hash table uses a
slightly larger memory footprint as it allocates a 16-bit and 32-
bit hash table that are not needed. However, in the exponential
and Zipfian distributions, the adaptive hash reduces memory
usage significantly, across all values of the Zipfian constant
tested, and most of the values of the exponential constant
tested (Figures 3, 5). On average, however, the memory usage
for adaptive exponential should converge to no more than the
standard hash, as the only excesses were from late stage resizes
in one of the adaptive tables.

We also see from Figure 2 that the throughput for each
distribution is relatively similar to the standard throughput.
Exponential insertions are much faster, likely due to reduced
cache pressure with a smaller hash table (Figure 6). Uniformly
distributed values are slower as more computations have to be
done for an insert, and Zipfian distributed values are more or
less the same on both systems (Figure 4).

We summarize memory and throughput statistics in Table I
for the tests run on 109 hashes.

D. Word Distribution

As seen in Figures 2 and 1, we see that for computing
the distribution of words in the 1.2 GB of plain-text, the



TABLE I
DISTRIBUTION STATISTICS

Distribution % > 2-bytes % > 4-bytes Hashes/ms (S) GB of Memory (S) Hashes/ms (A) GB of Memory (A)
Zipfian 11.2 1.08 486 36 445 20.9

Exponential 100 13.5 569 393 442 22.1
Uniform 100 100 619 36.0 696 36.0
Words 0.04 0 16.8 0.032 21.0 0.016

Fig. 1. Hash Table Memory Usage

Fig. 2. Hash Table Throughput

adaptive approach saves 50% of memory. This number is
slightly misleading, however, as there is no reason that a 64
bit table should be used when the maximum value of a word
count can be stored in a 32-bit integer. However, even when
modifying the original control table to have 32-bit values, we
still save 25% memory. The throughput on this test decreases
slightly, likely due to the increased overhead of many calls
to contains and increment, which are slower on the
adaptive table.

IV. ADVANTAGES OF APPROACH

A. Application Programming Interface

The adaptive hash table maintains the existing hash table
interface and requires no modification to user calls. This allows
the user to insert values without having to check their size
beforehand, or call different methods based on the size. This

Fig. 3. Hash Table Memory Footprint (Zipfian)

Fig. 4. Hash Table Throughput (Zipfian)

isolates the user from the internal hash table logic, and allows
for simple use with the standard API calls to a hash table.

B. Extensible and Algorithm Agnostic

Although these evaluations were run using our own C im-
plementation of a cuckoo hash table, this method can applied
to any hash table that allows for rigid values. We can initialize
multiple hash tables (potentially on demand), and then have
a external handler that determines which table to assign an
incoming value to. For contains and remove operations, there
is a slowdown linearly proportional to the number of tables,
but from our experiments this has a minimal effect, as the
reduced cache and memory usage counteract the effect. As
demonstrated in the results, when the distribution falls almost



Fig. 5. Hash Table Memory Footprint (Exponential)

Fig. 6. Hash Table Throughput (Exponential)

exclusively within one table, the other tables remain at their
initialized size.

C. Parallelization

Although the current implementation is single-threaded,
there is no barrier to a parallel implementation. As men-
tioned in the previous section, each table can be managed
independently, and can be used with any existing hash table
implementation that allows control of hash table value siz-
ing. The disaggregation of the hash table may even provide
additional benefits, as the load is somewhat distributed across
the different hash tables. A thread pool could be used to allow
each table to request threads if needed, as the number of tables
and frequency of their requests depends on the distribution of
the data.

V. SUMMARY

This presents a very limited inspection of the benefits of
an adaptive hash approach to non-uniformly distributed data.
In particular, data that falls on an exponential or Zipfian
distribution can be stored much more compactly without
significant throughput loss. Further evaluation of this approach
using hash table libraries and more variations to the size and

balance of add/remove calls can be done. Additionally, there
is the possibility of adding memory references, and alternative
compression techniques to allow adaptive hashing to store any
size data without allocating very large tables.

REFERENCES

[1] R. Pugh and F. F. Rodler, “Cuckoo hashing”, Journal of Algorithms
Volume 51, Issue 2, May 2004, Pages 122-144.

[2] https://github.com/Cyan4973/xxHash


	Introduction
	Implementation
	Base Hash Table
	Adaptive Hash Table

	Evaluation
	Distributions
	Methodology
	Performance Results
	Word Distribution

	Advantages of Approach
	Application Programming Interface
	Extensible and Algorithm Agnostic
	Parallelization

	Summary
	References

