Accelerating CSV Analysis Using a Databases Approach

Arjun Rawal
arjunrawal4@uchicago.edu

Motivation: Even with an increased focus on analytics and data
storage size, CSV remains a popular choice for simple data storage
as it is human readable and portable. Providing the same capabilities
as optimized formats such as Parquet and HDF5 is a challenge as
CSV requires more data movement and parsing. We use techniques
from data compression and database theory to allow users to pass
queries when reading a CSV, allowing larger files to be analyzed
with limited memory, and providing fast access to small subsets of
data that a user may want to view. To achieve these results, we use
categorization and optimized datatypes to reduce memory size, and
store in memory representation to remove text parsing overhead.

Approach: Very large CSV datasets (>5 GB) are commonly
found, and deriving valuable insights from them requires extensive
memory to read and parse the entire file at once, or user over-
head to divide up computation and memory usage, increasing time
to results. Pandas, a Python data analytics framework, provides
a read_csv function which is configurable, but is fundamentally
limited by it having to load and parse every line of the data. The
CSV format has no fixed offsets or higher lever structure, so a query
to just the last row will require seeking through the entire file, and
doing some text parsing on each row. Reading a file that is larger
than memory will require parsing in chunks, adding additional user
development time to manage total memory consumption and ag-
gregate results. Furthermore, if a secondary query needs to be run
on a larger than memory dataset, the entire file has to be read and
parsed again, increasing the overall user runtime. Other formats
such as Parquet and HDF5 are better at dealing with larger than
memory datasets, and perform better than CSV on parsing and
querying. However, they are harder for non computer scientists
to work with. We show that storing a secondary representation
can speed selection query times by >67x and cardinality queries
by >40x over the standard read_csv() and then drop() approach,
while keeping additional storage overhead below 25%.

Memory Representation: We realize that latency overhead
of multiple queries (due to repeated parsing) can be eliminated by
storing a memory representation on disk, which eliminates the need
to redo the text parsing on every read. However, this representation
can be larger than the CSV file, requiring more data movement and
degrading performance . Therefore, we create a procedure to reduce
the in memory size of Pandas dataframes using best-fit datatypes
and automatic categorization. We use categories to replace values
that occur more than 10% of the time, as many values are repeated
extensively (State, Country, etc).

We also reduce integer column memory by looking at the range
of values in each column and matching to the smallest numpy
datatype that fits it (int8, int16, etc). Because pandas natively stores
all datatypes in the largest type, and does not remove duplicates,
this can reduce the size of in memory representation by >90%. We
use Apache Feather to write the reduced memory dataframe at
>80x the speed of CSV writing, and store a third representation of

individual columns to enable even faster cardinality queries. This
one time data conversion is done with the first call to read.

Methodology: We implemented ReadFast! in Python 3.7.6 using
Pandas 0.24.1 and Feather 0.4.0. All evaluation was run on a 2.9
GHz processor with 8GB RAM. We analyze on the Stanford Open
Policing dataset from California (6.7GB). 2

Parse + Query Time vs Number of Queries (CA_police dataset)

000 read_fast
read_columnar
read_csv (chunked) -
read_csv
4000
z =
000 T
E ~
= T
c -
£ e
B T
:‘é 2000 R 2l
. —
T
-
L~
y //
1000 P
ST
= -
,/ T
ed
o
1]
12 3 4 5 6 7 8 91011213 141516 17 18 19 20 21 22 23 M4 25

Number of Queries Executed
Figure 1: Benefit of Secondary Storage on Query Runtime

Results: We see that the storage overhead for the memory rep-
resentation of both the entire frame and individual columns is 20%
of the original CSV size. Queries on one column (SELECT * FROM
ca_police WHERE COL = X) are 20x faster than regular read_csv,
and 16x faster than iterated read_csv. Queries on 20 columns are
>60x faster than read_csv. Additionally, the columnar storage en-
ables cardinality queries, which are >500x faster than than read_csv
on one column, and >50x faster on 3+ columns. The benefit on mul-
tiple columns decreases as the cost to intersect and union indices
starts to take a substantial portion of the overall execution time. The
overhead of the original parsing and write out for ReadFast is 1.5x
the cost of a normal CSV query, so within 2 queries ReadFast has
reduced the the overall execution time. As demonstrated in Figure
1 the cost of additional queries is extremely low when compared
to other approaches. This approach is scalable and can reduce the
time to execute queries when data is either numerical, or contains
strings which can be categorized. Data sets that have less repeti-
tion may not benefit as much, but even in non optimal cases, this
approach will not increase overall query time on multiple queries.
Future work could focus on making a multi-threaded version of
this software, and integrating fast compression libraries to reduce
the size of Feather files.

!https://github.com/arjunrawal4/pandas-memdb
Zhttps://openpolicing.stanford.edu/


https://github.com/arjunrawal4/pandas-memdb
https://openpolicing.stanford.edu/

